
Altair Accelerator 2024.1.0

User Guide



Contents

Altair Accelerator User Guide.................................................................................................................................................4

Use Accelerator Help................................................................................................................................................................. 7

Accelerator Quick Start..............................................................................................................................................................9

Command Line Interface..........................................................................................................................................................12

Quick Reference....................................................................................................................................................................... 14

User Shell Setup.......................................................................................................................................................................16

Verify Your Setup........................................................................................................................................................ 17

Running a Job...........................................................................................................................................................................18

Submit Jobs................................................................................................................................................................... 18

View Job Progress and Results....................................................................................................................................27

Manage Jobs..................................................................................................................................................................32

Rerun Jobs.....................................................................................................................................................................37

Job Management.......................................................................................................................................................................40

Job Arrays..................................................................................................................................................................... 40

Jobname Attribute......................................................................................................................................................... 40

Jobclasses.......................................................................................................................................................................41

Pre-Command and Post-Command Job Conditions.....................................................................................................42

Schedule Job Submission.........................................................................................................................................................44

Queue Selection............................................................................................................................................................ 44

Scheduled Jobs..............................................................................................................................................................46

Priority........................................................................................................................................................................... 47

Distributed Parallel Support......................................................................................................................................... 49

Multiphase Support....................................................................................................................................................... 54

Job Submission Arguments.......................................................................................................................................... 56

Modify Running Jobs...............................................................................................................................................................57

Interactive Jobs............................................................................................................................................................. 57

Modify Scheduled Jobs................................................................................................................................................ 59

Restrictions and Consequences.....................................................................................................................................61

FairShare Groups......................................................................................................................................................................63

Job Placement Policies.............................................................................................................................................................64

Clean Up Log Files..................................................................................................................................................................66

Debug Jobs without Running Accelerator...............................................................................................................................68

Job Runtime - Monitor and Profile......................................................................................................................................... 70

Job I/O Profiling........................................................................................................................................................... 73

Monitor the Workload..............................................................................................................................................................75

List Jobs........................................................................................................................................................................ 75

Summary of All Jobs....................................................................................................................................................77

Notification of Job Status.............................................................................................................................................78

Invoke the GUI............................................................................................................................................................. 79

Icons...............................................................................................................................................................................80

Show the Hosts/Taskers................................................................................................................................................82

2



Monitor Jobs, Taskers and Resources..........................................................................................................................88

Statistical Information about Resources and Jobs...................................................................................................................90

Statistics.........................................................................................................................................................................90

Resource Statistics........................................................................................................................................................ 90

Resource Plots...............................................................................................................................................................92

Job Resource Plots........................................................................................................................................................95

Environment Control................................................................................................................................................................ 98

Select a Named Environment.......................................................................................................................................99

Use Snapshot with Named Environment..................................................................................................................... 99

Job Resources......................................................................................................................................................................... 101

Cross-platform Job Runs............................................................................................................................................ 101

Accelerator and ClearCase: nc run -clearcase........................................................................................................... 101

Request a License Before Executing Jobs................................................................................................................. 102

NUMA Control and CPU Affinity.............................................................................................................................104

CGROUPS for Jobs.................................................................................................................................................... 105

Use Containers for Jobs............................................................................................................................................. 107

Match Jobs to Handles............................................................................................................................................... 108

Resource/Handle Matching.........................................................................................................................................110

Advanced Information............................................................................................................................................................111

Set the Range for VovId............................................................................................................................................ 111

Node Fields................................................................................................................................................................. 112

Formatting Strings.......................................................................................................................................................123

Time Specifications.....................................................................................................................................................124

Selection Rules............................................................................................................................................................126

Migrate from LSF.......................................................................................................................................................129

Frequently Asked Questions and Troubleshooting Tips....................................................................................................... 131

HPC Advice................................................................................................................................................................ 134

NVIDIA™ GPUs Support in Accelerator.................................................................................................................. 136

Simulation Scripts....................................................................................................................................................... 138

Sanity Check for vovserver........................................................................................................................................ 139

Disable Regular User Login.......................................................................................................................................140

Auxiliary Group Membership.....................................................................................................................................142

Troubleshooting...........................................................................................................................................................143

Deprecated Commands...........................................................................................................................................................146

LSF Emulation........................................................................................................................................................................147

Legal Notices................................................................................................................................................................................ 151
Intellectual Property Rights Notice........................................................................................................................................152

Technical Support...................................................................................................................................................................156

Index.................................................................................................................................................................................................158

3



Altair Accelerator User Guide 1

Altair Accelerator User Guide

This guide describes basic tasks in Accelerator, including submitting jobs, tracking job information, and analyzing and solving

common problems.

This chapter covers the following:

• Use Accelerator Help  (p. 7)

• Accelerator Quick Start  (p. 9)

• Command Line Interface  (p. 12)

• Quick Reference  (p. 14)

• User Shell Setup  (p. 16)

• Running a Job  (p. 18)

• Job Management  (p. 40)

• Schedule Job Submission  (p. 44)

• Modify Running Jobs  (p. 57)

• FairShare Groups  (p. 63)

• Job Placement Policies  (p. 64)

• Clean Up Log Files  (p. 66)

• Debug Jobs without Running Accelerator  (p. 68)

• Job Runtime - Monitor and Profile  (p. 70)

• Monitor the Workload  (p. 75)

• Statistical Information about Resources and Jobs  (p. 90)

• Environment Control  (p. 98)

• Job Resources  (p. 101)

• Advanced Information  (p. 111)

• Frequently Asked Questions and Troubleshooting Tips  (p. 131)

• Deprecated Commands  (p. 146)

• LSF Emulation  (p. 147)



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.5

Note:

The terminology in this release has changed from the previous one.

The Accelerator products are built on platform called vov using a client-server architecture with remote-procedure-

calls (RPC). The server software module is called vovserver. It communicates to clients using the vov protocol;

vovservers can also be configured to respond to http requests: the REST API is implemented on top of http. There

are several different client types, those that make requests to the vovserver are typically implemented using vovsh

(the vov shell - a Tcl interpreter); those that respond to vovserver requests to run jobs or tasks are taskers and the

software here is called vovtasker. The vovtasker can run on the same host as the vovserver or on a separate host;

these hosts are typically referred to as compute nodes, compute hosts or execution hosts.

The architecture allows for multiple vovservers to communicate with each other via a vovagent. Examples of

vovagents include vovwxd, indirect taskers and vovlad.

In the 2021.1.0 release, the term slave has been deprecated and has been replaced with the term tasker. The web user

interface and the online documentation have been updated to reflect this change, as has the majority of the code base.

Subsequent releases will complete the transition.

Accessing Accelerator

Accelerator can be accessed via the following media:

• Web UI. Configuring Accelerator properties, and viewing job status, configurations, available resources and more is

available through the Web user interface.

• GUI. Graphical user interface, independent of the Web is also available for graphical views of current job and resource

statuses.

• CLI Command. Commands are also available for configuration, viewing the status of jobs and resources. GUI and WebUI

can be invoked through CLI commands.

Theory of Operation

During the initial setup, the Accelerator host server, vovserver, establishes a main port for communication and additional ports for

web access and read-only access. Afterwards, the vovserver waits for and responds to incoming connection requests from clients.

Clients consist of regular clients that request a particular service, taskers (server farms) that provide resources, and notify clients

that listen for events. In addition to tasker-based resources, some clients provide central resources, which are stored in and tracked

by the vovserver.

Regular clients can define jobs, or query data about jobs or system status. When a job is defined, it is normally placed in a

scheduled state. Scheduled jobs are sorted into buckets. Jobs that have the same characteristics go in the same bucket. Buckets are

placed in prioritized order for dispatching. This prioritization is based on FairShare, an allocation system. The top priority job in

each bucket is dispatched when each of the defined resources (requests) for that job is available. The job requests can be fulfilled

from the central pool as well as the tasker resources. When a tasker is found that completes the job's resource request, the job is

dispatched to that tasker and the job status changes to running.

When the job has completed, the tasker notifies the vovserver. The resources, both tasker-based and central, are recovered, which

allows subsequent jobs (queued in the buckets) to be dispatched. When completed, the job status is normally updated to either valid

or failed.

As previously stated, in addition to dispatching jobs and processing their statuses, the vovserver responds to queries about system

and job requests, publishes events to notify clients, and continues to process incoming job requests.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.6

Known Limitations

In the Windows environment, PowerShell is not supported; it is strongly recommend to avoid using PowerShell.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.7

Use Accelerator Help
Accelerator documentation is available in HTML and PDF format.

Access the Help when Accelerator is Running

When Accelerator is running, it displays the documentation through its browser interface. To access it from browser, you need to

know which host and port Accelerator is running on. Ask your administrator, or find the URL for Accelerator with the following

command:

% Accelerator cmd vovbrowser
http://comet:6271/project

In the example below, assume Accelerator is running on host comet, port 6271. The URL for Accelerator is:

http://comet:6271

To get the entire suite of Altair Accelerator documents, including FlowTracer™, Accelerator™, Monitor™ and the VOV

subsystem, use the following URL:

http://comet:6271/doc/html/bookshelf/index.htm

Access the Help when Accelerator is not Running

All the documentation files are in the Altair Accelerator install directory, so you can access them even if vovserver is not running.

To do this, open /installation_directory/common/doc/html/bookshelf/index.htm in your browser.

Tip:  Bookmark the above URL for future reference.

Access the Help PDF Files

Altair Accelerator also provides PDF files for each of the guides. All the PDF files are in the directory /

installation_directory/common/doc/pdf

Access the Help via the Command Line

The main commands of Accelerator are nc and ncmgr, with some subcommands and options. You can get usage help, descriptions

and examples of the commands by running the command without any options, or with the -h option. For example,

% nc info -h
nc:
nc:  NC INFO:
nc:  Get information about a specific job or list of jobs.
nc:  USAGE:
nc:  % nc info <jobId> [options]...
nc:   -h      -- Show this message
nc:   -l      -- Show the log file
nc: 

Access the Help via the vovshow Command

Another source of live information is using the command vovshow. The following options are often useful:

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.8

vovshow -env RX Displays the environment variables that match the regular expression RX provided.

vovshow -fields Shows the fields known to the version of VOV in use.

vovshow -failcodes Shows the table of known failure codes.

For example, to find a variable that controls the name of the stdout/stderr files, without knowing the exact name of that variable,

the following command can be used:

% vovshow -env STD
VOV_STDOUT_SPEC           Control the names of file used to save stdout and
                          stderr. The value is computed by substituting
                          the substrings @OUT@ and @UNIQUE@ and @ID@.
                          Examples: % setenv VOV_STDOUT_SPEC
                          .std@OUT@.@UNIQUE@ % setenv VOV_STDOUT_SPEC
                          .std@OUT@.@ID@

The output provides a description of all the variables used by the FlowTracer system that include the substring "STD". In this

example, the output resultVOV_STDOUT_SPEC.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.9

Accelerator Quick Start
Accelerator has two main commands, nc and ncmgr.

• nc is used to submit, query, and stop jobs. This command can also be invoked as vnc.

• ncmgr is used to start a queue: ncmgr start. By default, the queue (vnc) starts in a server working directory (SWD) that

is a subdirectory in $VOVDIR/../../vnc.

The output of ncmgr start/stop is logged in ${VOVDIR}/local/logs/nc, if it exists.

This page shows the usage messages that are generated by the nc and ncmgr commands.

nc

vnc: Usage Message
  Usage: nc [-q queuename] <command> [command options]
  
  Queue selection:
    The default queue is called "vnc".
  
    You can specify a different queue with the option -q <queuename>
    or by setting the environment variable NC_QUEUE.
  
  Commands:
    clean               Cleanup log files and env files.
    debug               Show how to run the same job without Accelerator.
    dispatch            Force dispatch of a job to a specific tasker.
    forget              Forget old jobs from the system.
    getfield            Get a field for a job.
    gui                 Start a simple graphical interface.
    help                This help message.
    hosts               Show farm hosts (also called taskers).
    info                Get information about a job and its outputs.
    list                List the jobs in the system.
    jobclass            List the available job classes.
    kerberos            Interface to Kerberos (experimental).
    modify              Modify attributes of scheduled jobs.
    monitor             Monitor network activity.
    rerun               Rerun a job already known to the system.
    resources           Shows resource list and current statistics.
    resume              Resume a job previously suspended.
    run <job>           Run a new job (also called 'submit').
    preempt             Preempt a job.
    stop                Stop jobs.
    submit <job>        Same as 'run'.
    summary             Get a summary report for all my jobs.
    suspend             Suspend the execution of a job.
    taskerlist          Show available tasker lists.
    wait                Wait for a job to complete.
    who                 Report on who is using the system.
    why                 Analyze job status reasons.
       
  
  Unique abbreviations for commands are accepted.
  
  Advanced features:
    cmd <command>       Execute an arbitrary VOV command in the

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.10

                        context of the $product server.
    source <file.tcl>   Source the given Tcl file.
    -                   Accept commands from stdin.
  
  For more help type:
    % $::command <command> -h
  
  Copyright (c) 1998-2021, Altair Engineering.
  

ncmgr
This program manages the vovserver for Accelerator.

Usage

vncmgr: Usage Message

        This program manages the vovserver for Accelerator.
        Copyright (c) 1998-2022, Altair Engineering.

USAGE:
        ncmgr help|info|rehost|reset|start|stop|cm [OPTIONS]

ACTIONS:
        info   [-queue|-q <name>] [-v]
        reset  [-soft | -hard | -h ]
        rehost [-force] [-queue|-q <name>] -host <host>
        start  [-dir <server_working_dir>] [-force] [-queue|-q <name>]
               [-port <port> ] [-webport <port>] [-roport <port>]
               [-dbhost <host>] [-dbroot <path>] [-dbport <port>]
               [-prod nc|wx|he] [-basequeue <name>] [-dd]
               The default <server_working_dir> is
               <...>/vnc.
               This is the parent of the configuration (.swd) directory for
               the queue.
        stop   [-force] [-freeze] [-freeze_nocpr] [-queue|-q <name>]
               [-writeprdir <dirname>]
               -force       Do not prompt for confirmation
               -freeze      Instruct taskers to keep running and wait for a
                            new server
               -freeze_nocpr Instruct taskers to keep running and wait for a
                             new server, and do not compress PR file
               -writeprdir  Writes the PR file to the specified directory
               (which is created if necessary)
        cm     [-queue|-q name] <ACTION> [ARGUMENTS]
               Configuration Management. Pass "help" for detailed usage.

EXAMPLES:
        % ncmgr
        % ncmgr -h
        % ncmgr start -queue vnc2
        % ncmgr start -port 6699 -queue vnc99
        % ncmgr info
        % ncmgr reset -soft
        % ncmgr reset -hard
        % ncmgr cm help

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.11

EXAMPLE TO STOP AND RESTART SERVER:

        % ncmgr stop -freeze
        % ncmgr start -force
        % ncmgr stop -freeze -force -writeprdir /tmp/abc123

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.12

Command Line Interface

All user commands have the following structure:

% nc [-q qname] subcommand [options]

The command plus the subcommand is one of the following:

• nc clean

• cmd

• nc debug

• dispatch

• nc forget

• nc gui

• help

• nc hosts

• nc info

• nc list

• nc jobclass

• nc modify

• monitor

• nc rerun

• resume

• nc run

• source

• nc stop

• nc summary

• suspend

• nc wait

For example:

% nc help
% nc run sleep 10
% nc list
% nc forget -mine

The Exclamation Point (!) Special Operator

Some Accelerator subcommands accept a single exclamation point, and interpret it to mean 'most-recent job run in the current

directory'. This is meant for interactive use to avoid typing or copying the nine digit job ID.

This is not recommend for use in scripts, because it involves a scan of the jobs in the system. Instead, save the job ID returned

when submitting the job and use the ID in queries.

The Accelerator subcommands that support this are:

• info

• getfield

• rerun

For example:

% nc info !

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.13

% nc info -l !

Some VOV commands that support this may sometimes be useful in Accelerator context, by preceding them with nc cmd:

• vovset

• vovfire

• vsx, vsy

Any unique prefix for the subcommand is accepted, which allows abbreviated forms of commands to be used. For example:

% nc l
% nc li
% nc lis
% nc list

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.14

Quick Reference

Common Commands

help Getting Accelerator help.

nc forget Remove jobs from Accelerator queue.

nc getfield Get detailed information on a job.

nc info Get information on jobs.

nc list Get a formatted list of jobs.

nc modify Modifying jobs in the system.

monitor Monitoring jobs and tasker machines.

notify Email notification.

policy Setting policy.

nc rerun Re-running jobs.

nc run Submitting jobs in Accelerator.

interactive Running interactive jobs in Accelerator.

status Getting status info in Accelerator.

nc stop Stopping jobs in Accelerator.

Information Pages

Altair Accelerator User Guide Introduction to Accelerator.

Installation Guide Installation of Accelerator.

Manage Managing Accelerator.

Test Testing Accelerator after installation.

Troubleshoot Troubleshooting Accelerator.

Administrative

Advanced Information Advanced command usage.

Clean Up Log Files Clean up log files.

Cross-platform Cross-platform runs.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.15

Environment Control Controlling the VNC environment.

FairShare Groups Setting up groups.

vnc_policy.tcl VOV policy setup file.

Resource Management Accelerator resource management.

Scheduled Jobs Accelerator job queue.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.16

User Shell Setup
To set up your user shell with Accelerator you need to know where the Altair Accelerator software has been installed.

Ask your system administrator.

User Setup: C-Shell, TCSH

Choose one of two choices:

a) Modify your ~/.cshrc file directly by adding the following line:

# Add this to your .cshrc
source /<installation_directory>/<version>/<platform>/etc/vovrc.csh

b) Run the vovsetupuser script, which creates a ~/.vovrc file and modifies your ~/.cshrc file to source the

~/.vovrc file.

% cd <installation_directory>/<version>/<platform>/
% cd scripts
% ./vovsetupuser -csh

User Setup: Bourne Shell, K-Shell, Z-Shell, Bash

Choose one of two choices:

a) Source the file $VOVDIR/etc/vovrc.sh. It is recommended that you add the following line to your ~/.profile file:

# Add this to your .profile or .bashrc
. <installation_directory>/<version>/<platform>/etc/vovrc.sh

b) Run the vovsetupuser script.

% cd <installation_directory>/<version>/<platform>/
% cd scripts
% ./vovsetupuser -sh

User Setup: Windows Command Shell

If Accelerator is installed in directory R:\opt\altair\vov\2023.1.1, you can set up your cmd shell by executing:

c:> R:\altair\vov\2023.1.1\win64\bat\vovinit.bat

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.17

Verify Your Setup

1. Run the following Altair Accelerator command to verify that your setup works:

% vovarch
linux64

2. Run the command vovversion to show the version of Accelerator that is installed.

% vovversion
2023.1.1

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.18

Running a Job
This section summarizes how to submit and run a job.

Information about submitting jobs will be covered in the sections Submit Jobs with CLI Commands and Submit Jobs from the

Browser.

Note:  To run a job, the working environment must be set. For information, refer to User Shell Setup.

Submit Jobs

Submit Jobs with CLI Commands

This chapter provides examples of submitting jobs using CLI (command line interface) commands.

Note:  CLI commands are case insensitive. For example, timetolerance and timeTolerance represent the

same command.

nc run

Note:  nc modify -res now support binary unit conversion for all memory based resources as a convenience

from Petabytes (PB), TerabyteS (TB), or GigabyteS (GB) to Megabytes (MB), which is still used internally

and reported by all commands. The input conversion will accept either decimal or integer form and are all case-

insensitive, so for example both nc run -r SWAP/1GB — sleep 0, and nc run -r RAM/0.1Tb —

sleep 0 are supported.

The currently supported parameter names for which this conversion is supported are RAM/, RAM#, RAMFREE#,

RAMFREE/, RAMTOTAL#, RAMFREE/, SWAP/, SWAP#, SWAPFREE#, SWAPFREE/, SWAPTOTAL#,

SWAPTOTAL/ and TMP# or TMP/. By default the unit is MB (Megabytes), where 1MB is 1<<20 bytes.

nc: Usage Message

NC RUN:
    Run one or more jobs. The jobs are added to the system, and
    will remain in the system until you use 'forget' to forget them
    or they are automatically forgotten by the system.
    If taskers and resources are available, the jobs are dispatched
    immediately, else they are queued.

USAGE:

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.19

    % nc run [OPTIONS] command ...

GENERAL OPTIONS:
    -h               -- Help usage message.
    -v  <level>      -- Verbose level from 0 (silent) to 9 (very verbose).
    --               -- Null option. In case of ambiguity, use this to separate
                        the options from the command.

    In addition, the value of the environment variable NC_RUN_ARGS is
    prepended to the argument list for this command, while the value of
    NC_RUN_ARGS_AFTER is appended.

JOB CHARACTERISTICS OPTIONS:
    -autokill <time>   -- Kill job if it runs longer than specified time.
                          Set it to zero to disable autokill (the default).
    -clearcase         -- This is a job to be run in a ClearCase view
                          (see docs).
    -C <class>         -- The job belongs to the given class.
                          If argument is empty, the option is ignored.
                          Option can be repeated.  The jobclass of the job
                          will be the last one specified.
    -e <env>           -- Set the environment. Default is current env, as
                          defined by the variable VOV_ENV.
                          Setting this to the null string "" or to
                          "SNAPSHOT", forces the use of an environment
                          snapshot.
    -e+ <env>          -- Append to existing environment.
    -ep                -- Capture environment in a SNAPSHOT property. Uses
                          SNAPPROP environment.
    -first             -- Schedule job first in its bucket.
    -forceterm         -- In the case of interactive jobs where the output is
                          piped, the job's TERM environment variable is set
                          to 'network'.  This option disables that behavior.
    -fstokens <N>      -- Multiply weight of this job in FairShare by N.
                          Default 1, range is [0..50000]
    -g <group>         -- Specify the FairShare group.
                          The .user:subgroup suffix will be added. You need
                          attach permission to run in the specified group.
    -G <group.tag>     -- Specify the complete FairShare group with the 
                          <group>.<tag> and/or <group>.<tag>:<subgroup> syntax.
                          (<tag> is typically a user.) If the <group> or
                          <subgroup> does not exist, it will be created with
                          the current user as the owner. You need attach
                          permission to run in the specified group.
    -ioprofile         -- Activate enhanced job profiling.
    -I, -Ir            -- Run interactive job. TTY signals like <ctrl>C are
                          propagated to the job.  If the environment variable
                          VOV_INTERACTIVE_PING is set, its value (TIMESPEC
                          format. minimum is 1m) will be used to keep the
                          connection with the interactive job alive by pinging
                          the job at the specified interval.
    -Il                -- Run interactive job. TTY signals like <ctrl>C are
                          kept local, not propagated to the job. Appropriate
                          for piping stdout to a file or command.  See above
                          for usage of VOV_INTERACTIVE_PING.
    -Ix                -- Run X Window based interactive job, no TTY, no wait.
                          Adds env D(DISPLAY=...) so job displays on submission
                          display.  See above for usage of VOV_INTERACTIVE_PING.
    -jobproj <name>    -- The job project is set to <name>. The default is
                          determined by the environment variables VOV_JOBPROJ,
                          LM_PROJECT and RLM_PROJECT.
    -jpp <JPP>         -- Specify a job-placement-policy. These policies are 
                          advisory only. Legal values for JPP are a comma 

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.20

                          separated list of one or more words from the following 
                          list:
                          At most one of these:
                           fastest   -- This is the default job placement
                                        policy: among all the taskers that can
                                        execute a job, choose the one with the
                                        highest power. The assumption is that a
                                        tasker with a higher power will complete
                                        the job faster.
                           slowest   -- Among all the taskers that can execute a
                                        job, choose the  with the least power.
                                        This policy may be useful to run
                                        regression jobs on older, less powerful
                                        hardware.
                           first     -- As soon as the scheduler finds a tasker
                                        to execute the job, it uses that tasker
                                        without checking all other taskers. This
                                        policy is useful for lowering the
                                        scheduling effort.
                           largest   -- Among all the taskers that can execute a
                                        job, choose the tasker with the most
                                        amount of unused slots and unused RAM
                                        ((MB of unused RAM) + 16000*(Number of
                                        unused cores)). This policy tends to
                                        spread the jobs on idle machines. In
                                        most cases, this policy may not be the
                                        most effective.
                           smallest  -- Among all the taskers that can execute a
                                        job, choose the tasker with the least
                                        amount of unused slots and unused RAM
                                        ((MB of unused RAM) + 16000*(Number of
                                        unused cores)). This policy tends to
                                        pack the jobs on machines that are
                                        already busy, thus keeping idle machines
                                        available if a large job is submitted.
                           smallram  -- Among all the taskers that can execute a
                                        job, choose the tasker with the least
                                        amount of total RAM. This policy is
                                        useful to pack the jobs on the smaller
                                        machines first, which keeps large
                                        machines available if a large job is
                                        submitted.
                          At most one of these (Linux-only):
                           pack      -- NUMA control: assign the job to a
                                        NUMA node with the least number of
                                        available resources that will fit the
                                        job. If none of the NUMA nodes have
                                        sufficient job slots and RAM, the job
                                        will be allowed to run on as many
                                        NUMA nodes as needed to satisfy its
                                        resource requirement.
                           spread    -- NUMA control: assign the job to a
                                        NUMA node that has the largest number
                                        of available resources.
                           none      -- NUMA control: allow Linux to place
                                        jobs. The Linux CPUs Allowed affinity
                                        list will be all the CPUs on the
                                        system (default).

                          Examples:
                          -jpp slowest
                          -jpp spread
                          -jpp smallest,pack

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.21

                          -jpp first,spread

                        Note: To place jobs on the same machines,
                              use first or smallest.
    -J <jobname>       -- Set the job name (same as -N <jobname>)
    -keep              -- Keep job after completion, disabling auto-forget.
    -keepfor <time>    -- Keep job after completion for specified time.
                          Disables auto-forget.
    -limit <spec>      -- Add limit to jobs submitted with this option. <spec>
                          could be just a number, or a name followed by a
                          number. Throttles the running jobs of a user
                          submitted with the same -limit option to the
                          specified number.
    -L <exitstatus>    -- Legal exit status list (default is 0). You can also
                          use commas to separate the valid statuses.
                          Examples:
                          -L 0,2,10        -L 0,200-208
    -maxresched <N>    -- Maximum number of times the job can be rescheduled.
                          Must be >= 1 and <= 10. Implemented
                          via the MAX_RESCHEDULE property on the job.
    -mpres RESLIST     -- Specification of the resources required by a
                          multiphase job. The RESLIST specifies the resource
                          lists for all phases of the job with % characters
                          delimiting the phases. The sublists of resources for
                          each phase are percent sign delimited.
                          Example: -mpres "RAM/200 CORES/2%RAM/20 CORES/3"
    -mpres+ <rsrc>     -- Append one resource to the multiphase resource list.
                          This option must follow the "-mpres" or "-mpres<n>"
                          option, otherwise the resources specified in "-mpres+"
                          will be overwritten.
    -mpres1 RESLIST
    -mpres2 RESLIST
    -mpres<n> RESLIST  -- Specify resources for a stage <n> of a multiphase
                          job. The number <n> is in the range from 1 to 9.
                          Example:  -mpres1 "RAM/200"
                                    -mpres2 "CORES/4 RAM/10"
    -N <jobname>       -- Same as -J <jobname>.
                          (compatible with FDL 'N' procedure)
    -p <priorities>    -- Set priorities for scheduling and execution of job.
                          Format is <schedulingPriority>[.executionPriority]
                          Priority is either a number from 1 (low) to 15 (top)
                          or a symbolic value 'low' 'normal' 'high' 'top' or
                          any abbreviation thereof.
                          Examples:  -p n   -p 4.high   -p high.low
    -pre <SCRIPT>      -- Execute <SCRIPT> as precondition. The JOBID will be
    -precmd <SCRIPT>      appended to the arguments of the script. If the
                          script exits with non-zero status, the job is not
                          run. See examples in $VOVDIR/etc/pre.
    -post <SCRIPT>     -- Execute <SCRIPT> as postcondition. The JOBID and
    -postcmd <SCRIPT>     EXITSTATUS will be appended to the arguments of the
                          script. The script is executed irrespective of the
                          success of the job. The exit status of the script
                          becomes the exit status of the job.
                          See examples in $VOVDIR/etc/post.
    -preemptable <N>   -- Set preemptable mode:
                          N=0    not preemptable
                          N=1    preemption allowed (default)
    -profile           -- Activate job profiling to track and graph over time
                          the following:  RAM usage, CPU usage, cumulative I/O,
                          and License usage.  Without this option, only the
                          current usage of RAM, CPU, and Licenses are reported
                          in the web UI.
    -r <r1> [r2..rN]   -- Set requested resources of the job.  Accepts

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.22

                          multiple resource arguments and may be repeated.
                          If -r is the last option, use '--' to separate
                          the last resource from the command line.
    -r+ <resource>     -- Append one resource to resource list.
                          No termination necessary.
    -r- <resource>     -- Remove one resource from the resource list.
                          It is an error to remove a resource that does not
                          exist. No termination necessary.
    -rf                   Add Filer:<FILER_NAME> resource
                          (computed from run dir)
    -reconcilemem      -- Monitor a job's actual memory usage and decrease 
                          consumed resources for the job if the consumed RAM for
                          the job is less than the requested RAM. Optional value
                          is a triplet of time specs:
                            start[:interval[:end]]
                            where:
                            - start is the time after job starts that monitoring
                              begins.
                            - interval is the time between checks. Default is
                              to check only once.
                            - end is the time after job start that monitoring
                              ends. Default is end of job. 
                          For example, "-reconcilemem 1m:2m:8m" instructs
                          Accelerator to start checking memory usage 1
                          minute after the job has begun, do it every 2
                          minutes and stop when the job has been running
                          for 8 minutes. Note: if actual memory usage
                          for a job exceeds requested RAM, the consumed
                          RAM resource for the job is increased whether
                          or not -reconcilemem is specified.
    -rundir <dir>      -- Specify a different run directory (default ".")
                          If the <dir> specification is quoted by single
                          quotes, the directory is taken exactly as given,
                          instead of being canonicalized. When using -rundir
                          with the SNAPSHOT environment, the -ep argument
                          must also be passed. Implies -D.
    -set <setName>     -- Assign the job(s) to the given set.
    -sg <subgroup>     -- Specify a subgroup for fairshare for the current user
    -splitstderr       -- Write the stderr output of the interactive job to
                          stderr. Default is to write the job's stderr output
                          to stdout. Note that using this option will probably
                          result in garbled terminal output due to interleaving
                          of stdout and stderr outputs.
    -tool <toolName>   -- Specify a "toolName" different from the tail of the
                          first command line argument.  The argument must be
                          less than 100 characters long and contain only
                          alphanumeric chars.
    -x | -xdur <xdur>  -- Set the expected duration of the job.
    -deadline <duration> -- Job is expected to be completed within the
                            given duration.
                            Set it to zero to disable it (the default).
    -deadlineat <time> -- Job is expected to be completed before the
                          given time.
                          The time is parsed by the Tcl command
                          [clock scan $time]
                          Set it to zero to disable it (the default).

SUBMISSION OPTIONS:
    -after <time>      -- Fire job after specified time.
    -array <n>         -- Submit a jobarray of 'n' repeated commands
                          Some fields may contain the strings @INDEX@, @JOBID@,
                          and @ARRAYID@, which are substituted when the array
                          is created.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.23

                          These fields are: command, env, wd, toolname, jobname
                          The output files are also subject to the same
                          substitutions.
                          Three comma-separated formats for <n> are supported:
                          last
                          first,last
                          first,last,increment
    -at <date>         -- Specify earliest date to fire job
                          The date is parsed by the Tcl command
                          [clock scan $date]
    -atomic            -- Create job array using a single RPC between
                          client and server.
    -dp N              -- Run a Distributed Parallel (DP) job requiring N
                          components.
    -dpactive <n>      -- The n-th component is the one that becomes active
    (default 1).
    -dpres RESLIST     -- Specification of the resources required by a parallel
                          job.  Example: -dpres "RAM/200 CORES/2"
                          See vovcreatepartialjobs for more info.
    -dpres+ <rsrc>     -- Append one resource to the distributed processing
                          resource list.
                          No termination necessary.
    -dpres1 RESLIST
    -dpres2 RESLIST
    -dpres<n> RESLIST  -- Specify resources for a component <n> of a DP job.
                          The number <n> is in the range from 1 to <N>
                          (option -dp)
                          Example:  -dpres1 "RAM/200"
                                    -dpres2 "CORES/4 RAM/10"
    -dpwait TIMESPEC   -- The time the components wait to rendezvous
                          (default 30s, minimum 3s). The wait is increased with
                          each attempt.  The maximum wait is controlled by the
                          property DP_WAIT_MAX
    -dpnocohortwait    -- Partial jobs may exit without waiting for primary.
    -dpinitialport N   -- Specify starting port on which partial jobs should
                          attempt to communicate.
    -D                 -- Do not check the validity of the directory.
    -f <file>          -- Get a list of commands from a file, one per line.
                          Jobs are created and then scheduled in blocks
                          of 200 jobs (unless otherwise specified by -fb).
    -fb <n>            -- Change the size of blocks of jobs scheduled with -f
                          (default 200).
    -fw  <S>           -- Specify delay between blocks of jobs, in seconds.
                          Value must be >= 0, default is 0.  Use with -f.
    -dribble           -- Short hand for -fb 1 -fw 0.1
    -F                 -- Force running of job even if it is already valid.
                          This is useful only if you are also using option -l
                          to set the name of the log file, otherwise this
                          option has no effect.
    -multiphase <N>    -- Set multiphase mode:
                          N=0    not multiphase (default)
                          N=1    multiphase
                          If a job will have more than 4 phases, then the
                          "-maxresched N" option must also be specified, where 
                          N is the number of phases the job will have.

LOGFILE AND OTHER DEPENDENCIES OPTIONS:
    -dep <Id|Name>     -- Specify a dependency on the list of jobs.
    -d   <Id|Name>        The argument can be a list of job Ids or job names.
                          In the case of job names, the dependency is looked
                          for in the set of jobs belonging to the submitting
                          user.
                          The current job will not start until the

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.24

                          specified jobs have completed successfully.
                          May be repeated.
                          Performance note: dependencies on job names are much
                          slower than dependencies on job ids.
    -depset <Name>     -- Specify a dependency on all jobs in the named set at
                          the time of submission. If other jobs are added to
                          the set later, they will not be added to the
                          dependencies. May be repeated.
    -forcelog          -- Force the declared output log to be the output of
    -force                this job. If another job was declaring the same
                          output, it will become black (SLEEPING).
    -forcedequeue      -- Force the declared output log to be the output of
                          this job. If any job was declaring the same
                          output, upcone of all the jobs producing this
                          file will be stopped and dequeued, it will
                          become black (SLEEPING).
    -i <in_file>       -- Specify an input dependency.
    -l <logfile>       -- Specify name of logfile.
                          As with -rundir, if the <logfile> is quoted with
                          either "  or ', then the name is taken literally
                          and not canonicalized.
                          Quoted or not, variable substitution on the file name
                          is performed for the following variables
                            @JOBID@    -> Id of job.
                            @ARRAYID@  -> Id of job array (if applicable).
                            @DATE@     -> ISO_TIMESTAMP
                            @UNIQUE@   -> %Y%m%d_%H%M%S.SUBMISSION_PID
                            @JOBCLASS@ -> job class (the alphanumeric part)
                            @JOBNAME@  -> job name  (the alphanumeric part)
                          You may need to use -forcelog together with -l.
                          Timestamp in format '%Y%m%d_%H%M%S.SUBMISSION_PID'
                          will be added to the logfile name for array jobs
                          when '@UNIQUE@' is not present in the logfile name.
    -n                 -- Use no wrapper (default: use 'vw').
    -nolog             -- Do not keep a log.
    -o <out_file>      -- Specify an output dependency.
    -P <NAME=VALUE>    -- Add the given property to the jobs (may be repeated).
    -s                 -- Declare that the logfile is SHARED (see docs).
                          You rarely need this option. If misused, this option
                          causes extra buckets to be created in the scheduler.
                          Probably you need '-forcelog -F' instead.
    -uniqueid          -- Force NC to use a unique new
                          VovId for each job submission,
                          even when the same job is submitted multiple times.
    -wrapper <W>       -- Use specified wrapper '<W>' (default: use 'vw').

E-MAIL NOTIFICATION AND WAIT OPTIONS:
    -m                 -- Send me mail upon job completion.
    -M <mail rule>     -- Send mail according to the given rule (see docs).
    -w                 -- Wait for the job(s) to finish: do not show any log.
                          For the meaning of the exit status, check nc wait.
    -wl                -- Wait for the job(s) to finish: show the log of
                          the last job.
                          For the meaning of the exit status, check nc wait.

EXTRAS:
    -nodb              -- The job is not stored in the jobs log or in the
                          database.
    -nopolicy          -- For ADMIN only.  Disable the policy layer.

EXAMPLES:
    % nc run sleep 10
    % nc run -autokill 30m   sleep 10000000

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.25

    % nc run -r SLOT/4 -xdur 500 -deadline 1h sleep 500
    % nc run -r SLOT/4 -xdur 500 -deadlineat 10am sleep 500
    % nc run -array 10 sleep 1          # submit 10 sleep jobs via
    % nc run -array 10,200,10 sleep 1   # submit sleep jobs with index
    % nc run -g /teams/chipA  -sg session12  sleep 1
    % nc run -G /teams/chipA.any   sleep 1
    % nc run -C longjobs sleep 10000
    % nc run -C longjobs -r+ RAM/200   sleep 10000
    % nc run -r unix -- sleep 10
    % nc run -p high sleep 10
    % nc run -e BASE -p h sleep 10
    % nc run -e SNAPSHOT+SIM -p h sleep 10
    % nc run -m sleep 10;               # email when job finishes.
    % nc run -M ":ERROR" sleep 10;    # email only if
    % nc run -dp 3 -dpres sun7,linux vovparallel clone sleep 10
    % nc run -at 6pm sleep 10
    % nc run -at "tomorrow 6pm" sleep 10
    % nc run -after 10m sleep 10
    % nc run -forcelog -F -l mylog.txt ./myjob
    

Default Output of nc run

The default output from nc run includes the following information:

• The resource list assigned to the job, which can be controlled with the option -r.

• The environment used for the job, which can be controlled with the option -e.

• The command line.

• The log file used to store both stderr and stdout of the command, which can be controlled with the option -l

• The JobId assigned by Accelerator to this job. JobIDs are used as handles with many of the Accelerator commands.

Submit a Single Job

Note:  In the job examples provided, each job performs sleep xx, which is wait, do nothing, for the duration

specified by the integer value xx.

When submitting a single job:

• Use an environment snapshot.

• The default resource list is the vovarch of the machine that submits the job.

• The name of the log file is automatically computed.

Run a Job, No Specifications

% nc run sleep 30
Resources= sun5
Env = SNAPSHOT(vnc_logs/env912488489.csh)
Command = sleep 30
Logfile = vnc_logs/20020704/150449.6528
JobId = 00002539

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.26

Run a Job, Environment Specified (-e)

% nc run -e BASE sleep 30
...

Run a Job, Environment and Resources Specified (-r)

% nc run -e BASE -r linux -- sleep 30
Resources= linux
Env = BASE
Command = sleep 30
Logfile = vnc_logs/20020704/150515.6528
JobId = 00002544

Run a Job, Environment and Resources Specified, Limited Verbosity (-v)

# Control verbosity: print the jobId only.
% nc run -v 1 -e BASE -r linux -- sleep 30
00002579
# Running a job,  environment and resources specified, limited verbosity and wait for
 job to finish (-w):
% nc run -w -v 0 -e BASE -r linux -- sleep 30

Submit Multiple Jobs

When a list of similar jobs is to be submitted, it is much more efficient to submit them all at once.

Note:  When submitting multiple jobs use the same environment and the same resources, and the same priority level

is scheduled for each job. Each job has its unique identification.

1. Prepare a file with one command on each line. Empty lines are ignored and lines that begin with # are considered

comments.

# Example of file used to submit multiple jobs at once. 
sleep 10
sleep 11
sleep 12
sleep 13

2. Use the option -f to specify the command file, as in the following example:

% nc run -r unix -e BASE -f commandFile

All jobs submitted with this method share the same environment, the same resources, and are scheduled at the same priority level.

Each job has its own ID.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.27

Submit Jobs from the Browser

This section shows an example of using a web browser to submit jobs.

For information about using the command line interface to submit jobs, refer to Submit Jobs with CLI Commands in the Altair

Accelerator User Guide..

An example script is located in $VOVDIR/etc/cgi/submit.cgi, which can be modified as needed. The script is invoked

with the URL http://HOST:PORT/cgi/submit.cgi, which is usually http://nc-host:6271/cgi/submit.cgi.

(6271 is the default port; however, the port that is actually used can be different.)

Note:  Placing the file in $VOVDIR/etc/cgi will make it available to all servers running on that Altair

Accelerator software hierarchy. To restrict access to Accelerator, create a cgi subdirectory under your Accelerator

directory vnc.swd, and place the submit.cgi script there. Remember to make the script executable.

submit.cgi is setup for running very basic scripts. This script is intended as an introduction to Accelerator.

The following is the output of the example script:

Figure 1:

View Job Progress and Results

Submitted Job Information Display

By default, nc run provides information when a job is submitted.

The following example shows information that is output with a simple command. The amount of information displayed is

determined by the verbose level. In the following example, verbose is at the default level of 4.

Note:  The environment is set with a snapshot.

% nc run sleep 10

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.28

Fairshare= /time/users.andrea
Resources= macosx CPUS/1 RAM/500
Env = SNAPSHOT(vnclogs/snp/joe/macosx/env27227.env)
Command  = vw sleep 10
Logfile  = vnc_logs/20130220/104930.33137
JobId    = 024609542

• FairShare: the FairShare ranking of this job.

• Resources: the resources used to run this job: the machine, number of CPUs, amount of RAM, and so on.

• Env: the environment in which the job was submitted.

• Command: the command that was used to execute this job.

• Logfile: the name of the logfile.

• JobID: the unique identifier of this job.

The amount of information can be changed by setting the verbose level by using the -v option, such as

nc run sleep 10 -v 2

.

Verbose Level Effect

0 Silent: no output is generated

1 Only the job ID is displayed

4 Default level

9 Very verbose

Get Job Information

The nc info command gives information about a job.

When executed without an option, the subcommand info displays the start time, completion time, duration, resources, priority,

and exit status.

vnc: Usage Message
  NC INFO:
      Get information about a specific job or list of jobs.
  USAGE:
      % nc info [options] <jobId> ...
  OPTIONS:
      -h               -- Show this message.
      -v               -- Increase verbosity.
      -l               -- Show the log file (actually, it shows all outputs).
      -ioprofile       -- Show job I/O profiling summary statistics for jobs
                          that have been completed. The job must have been 
                          submitted with the -ioprofile option.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.29

      -e               -- Show the environment name, or contents if a snapshot.
      -c               -- Show tasker compatibility table
                          (which tasker can run a job).
      -sc              -- Show tasker compatibility in normal output.
      -tc              -- Show tasker compatibility in normal output.
      -dep             -- Show job dependencies.
      -J   <jobname>   -- Show the jobs with given name.
                          (DO NOT USE IN SCRIPTS!)
  
  NOTE:   'nc info -J JOBNAME'  is way more expensive than 'nc info JOBID'
      We strongly recommend you never use nc info -J ... in scripts.
      Reason: job names are not unique and are not hashed.  Job Ids are unique.
  
  
  EXAMPLES:
      % nc info 00123456
            -- Show info about specific job.
      % nc info !
            -- Show info about most recent job in current dir.
      % nc info -l 12345
            -- Show log file(s) of job.
      % nc info -J MyJob
            -- Show info about all jobs called "MyJob".
      % nc info -tc 0012345
            -- If job is Scheduled, also show the summary
               of tasker compatibility.
      

Get Detailed Information about a Job

The command nc displays information about a job.

Get Detailed Information About a Job

The command nc getfield also gives information about a job, but in an undecorated form that is in scripts.

nc: Usage Message

NC GETFIELD:
    Get one or all fields of one or more Accelerator jobs.  Specify the jobID
    or use '!' for the most recent job in the current working directory.

    If the -J jobName option is given, only the first match
    is reported.  If there is no match, an error is reported.

OPTIONS:
    -f field     -- Specify field when giving multiple jobIDs.
    -h           -- Help usage message. You can also get the usage message by 
                    specifying no option at all.
    -J JOBNAME   -- Find first job with given JOBNAME. The search is restricted 
                    to the jobs that belong to the current user. This is 
                    significantly more expensive than using jobIds. Use 
                    sparingly.                
    -s           -- Same as -showid.
    -sep STRING  -- Use STRING as separator (default is a single space).
    -showid      -- Show jobId.
    -tab         -- Use a TAB character as separator.
    -v           -- Increase verbosity.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.30

EXAMPLES:
    % nc getfield -h
    % nc getfield 01234455
    % nc getfield 00123445 jobclass
    % nc getfield ! status
    % nc getfield -J JOBNAME
    % nc getfield 01234455 0123458 -f jobclass
    % nc getfield -s 01234455 0123458 -f jobclass
    

Examples:

% nc getfield 00012345 jobclass
normal
% nc getfield 00012345 cputime
7.125
% nc getfield 00012345 
... get list of all known fields (more than 100 of them)...

Graphical View of Job Progress and Results

Job Status

In Accelerator, each job goes through a number of states until completion.

The states are described in the following table:

Status Color Description

Idle BlueViolet If the node is a job, either it has not been run successfully yet

or it needs to be run again, because one of its inputs has been

modified since the last time the job was executed. If the node is

a file, it is the output of a job that is not Idle.

Queued Light blue The job is scheduled to be run. It may be already queued or it

will go in the queue as soon as all its inputs are ready.

Running Orange The job is currently being retraced; it has been dispatched

to one of the taskers. All the outputs of such a job are either

RETRACING or RUNNING.

Done Green If the node is a job, it has run successfully. If the node is a file,

it is up-to-date with respect to all other files and jobs on which

it depends.

Failed Red The job ran and failed.

Transfer Cream The job is being transferred to another cluster and it is not yet

running.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.31

Status Color Description

Suspended Pink The job was running (or retracing) and one of the processes

belonging to the job is currently suspended.

Sleeping Black Either the job caused an output conflict upon submission (bad

dependencies) or the job was not reclaimed by any tasker upon

crash recovery.

Withdrawn Gray A job has been withdrawn after dispatching, such as by the

preemption daemon.

Note:  This status occurs rarely and tends to be

hard to observe.

The normal sequence for a successful job is Idle > Queued > Running > Done

The normal sequence for a failing job is Idle > Queued > Running > Failed

Set Status

The status of a set is computed from the status of the nodes it contains.

The status of a set is computed from the status of the nodes it contains. If the set is empty, it's status is EMPTY. Otherwise, the

status is determined by the dominant status according to the following ranking:

1. RUNNING

2. RETRACING

3. FAILED

4. INVALID

5. UNKNOWN

6. MISSING

7. DELETED

8. SLEEPING

If at least one node is RUNNING, then the set itself is RUNNING. Otherwise, if at least one node is RETRACING, then the whole

set is RETRACING and so on.

In particular, if the set status is VALID (that is, green), then the set has no INVALID, FAILED, RETRACING or RUNNING

nodes.

The utility vovset can be used to create, modify, recompute, destroy sets.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.32

Manage Jobs
Accelerator provides several commands of job controls, including wait, stop, cleaning and debugging.

Wait for Jobs

To wait for one or more jobs to complete, use the nc wait command.

nc wait

Wait for a specific job or list of jobs to complete, fail, or be forgotten.

nc: Usage Message

NC WAIT:
        Wait for a specific job or list of jobs to complete,
        fail, or be forgotten
USAGE:
        % nc wait [OPTIONS] <jobId> ...
OPTIONS:
        -h                   -- Print this message.
        -q                   -- Quiet wait.
        -v                   -- Verbose (may be repeated up to 3 times)

        -dir <directory>     -- Wait for all jobs in the given directory.
        -subdirs <directory> -- Wait for all jobs in the given directory and
                                subdirectories.
        -select <rule>       -- Wait for all jobs in set defined by 'rule'.
                                The predicate 'isjob' is automatically added
                                to the rule.
        -set <setName>       -- Wait for all jobs in a set.
        -start               -- Wait for the specified jobs to start.
        -p                   -- Use polling method (automatic delay)
        -poll <MS>           -- Use polling method with a delay of <MS>
                                milliseconds.
                                MS values are between 2000 and 60000.
        -k                   -- Jobs are killed if you interrupt wait
                                by Ctrl-C.
        -l                   -- Show log file of last job while waiting.
                                The log is shown either as it is created
                                if the job has been submitted with option -wl
                                or all at once upon job completion.
        -maxwait <timespec>  -- Specify a maximum wait time.
        -timeout <timespec>  -- Same as -maxwait
        -jobinfo             -- Show info about jobs being executed.
        -callback <cmd>      -- Execute 'cmd JOBID JOBSTATUS' for every job
                                that completes. Output to stdout.
                                Errors ignored.
        -file <file>         -- For experts. Source <file>, mostly to define
                                overrides for procedure VncWaitCallback
                                { cmd jobId status }
        

RETURN:

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.33

        0       -- All jobs are done, or started if -start is specified.
        1       -- Some jobs are still invalid.
        2       -- Some jobs are failed.
        3       -- Some jobs have unexpected status.
        4       -- Some jobs have been lost.
        5       -- Waited for long enough (see -maxwait option)

EXAMPLES:
        % nc wait 22345 22356
        % nc wait -dir .
        % nc wait -subdirs .
        % nc wait -select "command~spice"
        % nc wait -set   "myset"
        % nc wait -callback ./myScript  -set myset
        % nc wait -jobinfo  -set myset
        % nc wait -p -set myset
        % nc wait -poll 5000 -set myset
        % nc wait -maxwait 1m -set myset

Stop Jobs

A job can be stopped when it is running or queued. Stopping a job does not "forget it" from the vovserver database. A job can only

be stopped by the owner or the Accelerator administrator.

nc stop

nc: Usage Message

NC STOP:
   Stop jobs.
   1. If the jobs are running, they are killed
      (unless you use option -dequeueonly).
   2. If the jobs are scheduled in the queue,
      they are removed from the queue.

   In either case, the jobs remain in the system.
   To remove them from the system, use the "forget" command.
   Jobs in the system can be rerun with the "rerun" command.

   When stopping a single job, the procedure checks for
   the properties NC_STOP_SIGNALS and NC_STOP_SIG_DELAY
   attached to the job to be stopped.

   The list of signals is also controlled
   by the environment variables VOV_STOP_SIGNALS and NC_STOP_SIGNALS.
   If both NC_STOP_SIGNALS and VOV_STOP_SIGNALS are present in the
   environment, the value of VOV_STOP_SIGNALS will be used.  Their
   functionality is otherwise identical.

   The default list of signals is TERM,HUP,INT,KILL and
   can be customized with the variable defaultStopSignalCascade in policy.tcl.

USAGE:
    % nc stop [OPTIONS] <jobId> ...

OPTIONS:
    -after   <s>        -- Start sending signals after specified seconds.
                           This is an initial delay, between 0 and 20s.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.34

    -allusers           -- Stop all jobs (only ADMIN can do it).
    -d                  -- Same as -dequeueonly.
    -delay   <s>        -- Minimum delay between signals (in seconds),
                           between 0 and 20s. Default is 3.
                           This can also be set with the property
                           NC_STOP_SIG_DELAY, or with the environment
                           variables NC_STOP_SIG_DELAY or
                           VOV_STOP_SIGNAL_DELAY.  If both NC_STOP_SIG_DELAY
                           and VOV_STOP_SIGNAL_DELAY are present in the
                           environment, the value of NC_STOP_SIGNAL_DELAY
                           will be used.
                           Priority: 1. Option -delay
                                     2. job property NC_STOP_SIG_DELAY
                                     3. env variable VOV_STOP_SIGNAL_DELAY,
                                        NC_STOP_SIG_DELAY
                                     4. default
    -dequeueonly        -- Just remove jobs from the queue.
                           All currently running jobs are not affected.
                           Can be abbreviated to -d.
    -dir <directory>    -- Stop all jobs in the given directory.
    -exclude <PROCLIST> -- List of processes to exclude from receiving the
                           signal.
    -h                  -- This message
    -include <PROCLIST> -- List of processes to receive the signal.
    -J <jobname>        -- Stop all my jobs with given jobname.
    -mine               -- Stop all my jobs.
    -set <setname>      -- Stop all my jobs in the given set.
    -sig     <SIGLIST>  -- Same as -signals.
    -signals <SIGLIST>  -- Comma separated list of signals to send to the jobs
                           (default is the sequence TERM,HUP,INT,KILL )
                           This can be also set with property NC_STOP_SIGNALS
                           or with the environment variables NC_STOP_SIGNALS
                           or VOV_STOP_SIGNALS.
                           Priority: 1. Option -signals
                                     2. job property NC_STOP_SIGNALS
                                     3. env variable VOV_STOP_SIGNALS,
                                        NC_STOP_SIGNALS
                                     4. default (can be configured as
                                        defaultStopSignalCascade
                                        in policy.tcl)
                           See also:  vovshow -env VOV_STOP_SIGNALS
                                      vovshow -env NC_STOP_SIGNALS
    -skiptop <0|1>      -- Whether to kill the top process.  
                           This is normally the job wrapper (e.g. vw, vwi).
                           Default is 0.
    -why <reason>       -- Give a reason for the stop.
                           This is stored on the WHYSTATUS
                           field of the stopped jobs.

EXAMPLES:
    % nc stop 00123456
    % nc stop -d -mine
    % nc stop -after 3 -mine
    % nc stop -set Class:hsim
    % nc stop -mine -why "Jobs no longer needed"
    % nc stop -sig "TERM,KILL" -delay 4 0012345
    % env VOV_STOP_SIGNALS=TERM,INT,KILL nc stop 0012345

SEE ALSO:
    % vovshow -env VOV_STOP_SIGNALS
    % vovshow -env NC_STOP_SIGNALS
    % vovshow -env VOV_STOP_SIGNAL_DELAY
    % vovshow -env NC_STOP_SIG_DELAY

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.35

    

Override Signals to Stop a Job

A job can be stopped by overriding the sequence of signals that are sent for the job. To do so, set the properties

NC_STOP_SIGNALS and NC_STOP_SIG_DELAY.

Automatic Stopping Based on Elapsed Time

If a job is submitted with the -autokill option, it will be stopped after the specified amount of time has elapsed. The check to

stop the job is performed by the tasker itself at an interval of about one minute, which can be controlled with the -U option of

vovtasker).

For example:

% nc run -autokill 30m sleep 1000000 

Automatic Stopping Based on CPU Time

To stop a job that exceeds a specific duration of CPU time, set the variable VOV_LIMIT_cputime. A job that exceeds the limit will

be killed by UNIX and will have status "Failed".

For example:

% nc run -e "BASE+D(VOV_LIMIT_cputime=10)" vovmemtime 10 100 0

Forget Jobs

Under normal operation, jobs are automatically forgotten from the server database as follows:

1. Completed jobs are forgotten after one hour.

2. Failed and idle jobs are forgotten after two days.

3. Queued and running jobs are never forgotten.

The nc forget command immediately deletes the specified job from the server database. If a job is running and the -

forcerunning flag is used, the job is stopped before it is forgotten.

nc forget

Forget jobs from the trace.

vnc: Usage Message
  
  NC FORGET:
      Forget jobs from the trace.
      If the jobs are running they are first stopped (if you use -forcerunning)
      If the jobs are queued, they are removed from the queue.
  

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.36

  USAGE:
      % nc forget [OPTIONS] <jobId> ...
  
  OPTIONS:
      -normal                 -- Forget all my jobs older than 1 day.
      -n                      -- Shortcut for -normal.
      -age   <age>            -- Forget all my jobs older than the
                                 specified age (except running jobs).
      -J    <jobname>         -- Forget all my jobs with given name.
      -set  <setname>         -- Forget all jobs in given set.
      -mine                   -- Forget all my jobs (regardless of age).
      -allusers               -- Forget jobs belonging to other users too.
                                 Need to be ADMIN.
      -dir  <dirname>         -- Forget all jobs in the given directory.
      -subdirs <dirname>      -- Forget all jobs in the given directory and
                                 all subdirectories.
      -selrule <rule>         -- Selection rule for jobs to forget.
      -forcerunning           -- Force deletion of running jobs.
      -h                      -- This message.
      -v                      -- Increase verbosity.
      -quiet                  -- Quiet forget. Ignore errors.
      -system                 -- Include system jobs (implied for explicit jobIds)
  
   EXAMPLES:
      % nc forget -n
      % nc forget -age 1h
      % nc forget -mine -dir .
      % nc forget -allusers -dir .
      % nc forget -set MyExperiment
      % nc forget -set MyExperiment -forcerunning
  

Autoforget Jobs

The autoforget flag sets up a job to automatically be forgotten by the system after a certain time, (not including suspension time) if

and only if the job is done, failed, or idle. Jobs that are scheduled, running, suspended or transfer are never autoforgotten.

Global auto-forget Parameters

There are three different auto-forget parameters:

• autoForgetValid

• autoForgetFailed

• autoForgetOthers

In Accelerator, the autoforget flag is set by default, which can be unset by using the option -keep in nc run. In Flow Design

Language (FDL), the variable make(autoforget) controls the flag.

• The autoforget flag on the job is true

• The job is done, failed, or idle.

Jobclass Specific auto-forget

• The job belongs to a jobclass with the AUTOFORGET property set to a positive value.

• The job is done, failed, or idle.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.37

Note:  The autoforget flag on the job is irrelevant.

If a jobclass has a specific auto-forget property, then the jobs in that jobclass will be forgotten after that specified time.

For example, to set the autoforget property on a jobclass called abc, use the vtk_jobclass_set_autoforget API:

% nc cmd vovsh -x "vtk_jobclass_set_autoforget abc 2m"

To disable this functionality for a jobclass, set the value of autoforget to a non-positive value, such as:

% nc cmd vovsh -x "vtk_jobclass_set_autoforget abc 0"

Auto-forget Log Files

If the parameter autoForgetRemoveLogs is true and the parameter disablefileaccess is false, the vovserver tries to

delete the log file of the jobs that are being auto-forgotten. The success of the deletion depends on the file permissions.

Note:  Accessing files makes the vovserver vulnerable to NFS problems.

Auto-forget Examples

For this example, the default autoforget policy is to forget jobs after 1h. Other jobs in the jobclass "Regression" should be retained

for 10days. Submit the jobs with the -keep option (no autoforget flag) and then set the AUTOFORGET property in the set

Class:Regression to 864000.

### Done by an ADMIN
% nc cmd vovsh -x 'vtk_jobclass_set_autoforget Regression 10d'

% nc run -C Regression -keep  ./my_test

Conversely, if the retention policy keeps the jobs for a long time (such as 3 days), some jobs in the jobclass "Quick" may be set to

be forgotten more promptly, (such as after 5m) of completion. In this case, set the AUTOFORGET property in the jobclass set as

follows:

### Done by an ADMIN
% nc cmd vovsh -x 'vtk_jobclass_set_autoforget Quick 5m'

Rerun Jobs
The nc rerun command initiates scheduling and executing jobs that are already in the server database.

By default, only the jobs that are idle or queued are affected by this command. To force rerunning jobs that are either complete or

failed, use the option -F.

Examples of rerunning jobs:

% nc rerun 2345 2355
nc: message: Scheduled jobs: 1 Total estimated time: 1m13s
nc: message: Scheduled jobs: 1 Total estimated time: 58s
% nc rerun -p 8 2345

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.38

nc: message: Scheduled jobs: 1 Total estimated time: 1m13s
% nc rerun -d . 
nc: message: Scheduled jobs: 44       Total estimated time: 20m23s

nc rerun

Rerun jobs already in the system.

vnc: Usage Message
  
   NC RERUN:
          Rerun jobs already in the system
   USAGE:
          % nc rerun [OPTIONS] jobId ...
   OPTIONS:
          -h                 -- This message.
          -F                 -- Force to rerun all specified jobs.
          -f                 -- Same as -F (backwards compatibility).
          -force             -- Same as -F.
          -first             -- Put job at top of its bucket.
          -J   <jobname>     -- Rerun all jobs with the given jobname.
          -set <setname>     -- Rerun all jobs in the given set.
          -dir <directory>   -- Rerun all jobs in the given directory.
          -p   <priority>    -- Set scheduling priority.
          -mine              -- Rerun all my jobs.
          -r <aux_resources> -- Additional resources to be used.
          -v                 -- Increase verbosity level.
  
   OBSOLETE OPTIONS:
          -all               -- Rerun all jobs.
      

Automatic Rerunning of Failed Jobs

If a job fails quickly, it is possible that a faulty tasker machine may be to blame. Under a faulty machine scenario, many jobs can

quickly run and fail, potentially emptying the job queue, requiring those jobs to be manually rescheduled.

The main method of protecting against this scenario is Black Hole Detection. If for any reason this method of protection does not

provide adequate coverage, a secondary method of protection is provided: auto-rescheduling.

This feature instructs the scheduler to rerun a job that fails within a configurable time threshold on a different host or tasker

(depending on parameter autoRescheduleOnNewHost) than the one on which it previously failed.

Note:  This feature may cause unwanted results in cases where job durations can be short and under the configured

threshold. Because of this, the feature is disabled by default.

To enable auto-rescheduling, set the threshold to a non-zero value. The threshold is controlled by setting

config(autoRescheduleThreshold) in the policy.tcl file. The value is a timespec: 3s is 3 seconds. The typical value for

this parameter is 2 to 4 seconds.

Proprietary Information of Altair Engineering

../../../ft/topics/shared/time_specs.htm


Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.39

The default behavior is to rerun on a different host, but the scheduler can be configured to target a different tasker instead, via the

config(autoRescheduleOnNewHost) setting. The default value is 1, which avoids the entire host. Set the value to 0 to

avoid the tasker. Normally, only one tasker runs on a given host, but in some scenarios, multiple taskers may be present on the

same host. In this case, the job may be routed back to the same physical machine as before. If the problem that caused the failure

was temporary, the job may succeed. If the problem still exists, the job will likely fail again and be auto-rescheduled to another

tasker in the pool.

Before a job is automatically resubmitted, the negated name of the host or tasker where the job previously failed is appended to the

job's requested resources. The job will not run again on a host or tasker where it has failed.

For example, if the job requests the resources linux hsim and fails on a host named broken-host, it will be resubmitted

with the resources

linux hsim !broken-host

If the job fails again quickly on a host named jupiter, the resources will become

linux hsim !broken-host !jupiter

Automatic resubmission is allowed a limited number of times between 0 and 10, which is controlled by the following parameters in

the order shown:

1. The property MAX_RESCHEDULE attached to the job (if any);

2. The property MAX_RESCHEDULE attached to the jobclass set. This property can be set with

vtk_jobclass_set_max_reschedule;

3. The parameter autoRescheduleCount (default value 4), can be set in policy.tcl. An example follows:

# Fragment of policy.tcl
set config(autoRescheduleCount)      4
set config(autoRescheduleThreshold)  2s
set config(autoRescheduleOnNewHost)  1

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.40

Job Management

Job Arrays
Using an array provides the option of submitting multiple jobs in a specific order.

Each job in an array is assigned its own job ID and is treated as an individual job. The syntax is: nc run -array <n>

To submit an array, use option -array N in nc run. The value of N is between 1 and the value specified by the maxJobArray 

configuration parameter. maxJobArray is normally set to 1000.

For example:

% nc run -array 100 sleep 10

The job specification may contain the symbolic element @INDEX@ in either the command line, the environment, or the directory

specification. The @INDEX@ element is substituted when the job array is created. Use @INDEX@ in the command line of the

job array or in its environment.

Examples

% nc run -array 100 -e "BASE" sleep @INDEX@
nc run -array 100 -e "BASE+D(MYINDEX=@INDEX@)" sleep 10

VOV_JOBINDEX

When you submit a job array, such as:

nc run -array 5 myJob.sh

The VOV_JOBINDEX environment variable will be set in the execution environment of each job in the array. In the above

example, the first job created will have a VOV_JOBINDEX value of 1, the second job will have 2, and so on, with the last job

having a value of 5.

Note:  This variable is for consumption only and is not intended to be set by the user at any time.

Jobname Attribute
The jobname is an attribute of a job.

The default value is the null string "".

• The jobname does not need to be unique for each job.

• The jobname, if defined, is used in the GUI as the primary label for the jobs; otherwise, the tool name is used.

• The field associated with the jobname is @JOBNAME@.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.41

To set the jobname in the Flow Design Language (FDL), use the procedure N. For example:

N "Clock Routing"; # A short name for the job.
J vw /some/long/path/to/an/executable/script/script.pl arg1 arg2

Jobname in Accelerator

In Accelerator, the jobname can be set with the option -N. For example:

% nc run -N this_is_my_job  sleep 100

For all products, strict job name checking has been enabled and invalid job name characters will cause an error. For Accelerator

and Accelerator Plus, this can be overridden by putting the following in $VOVDIR/local/vncrun.config.tcl:

set ::jobname_lexicon legacy or set ::jobname_lexicon replace.

Legacy will use the more lax job naming rules from earlier releases.

Replace will identify invalid characters in the job name, replace them with "_", and issue a warning to the console.

Jobclasses
A jobclass allows multiple job parameters to be set in a single object that can be requested at submission time.

For example, there may be a job that requires 3 different licenses, 4GB of RAM, and 4 cores. Instead of requesting all 3 licenses, a

jobclass can be created that is called with the -C submission option to the nc run command. Jobclasses are often used to emulate

queues that are found in other batch processing systems.

Note:  A jobclass can only be created by an Accelerator administrator.

Find the Available Jobclasses

To list the available classes from the command line, use the jobclass subcommand of the nc command.

% nc jobclass [OPTIONS]

The jobclass subcommand accepts the repeatable option -l. The first option includes the description, and the second option

shows the values to which VOV_JOB_DESC slots will be set.

In addition, Accelerator provides the Jobclass page. This page shows a table of the job classes, with links to the definitions of each

class, and to the sets containing the jobs in that class. It also shows the pass/fail status as a bar graph.

Submit Jobs Using Jobclasses

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.42

To submit a job in a given class, use the option -C of nc run.

% nc run -C short sleep 10

Jobs in a class are automatically added to a set named after the class, for example "Class:interactive".

The options to nc run are parsed sequentially, so it is possible to do a command line override of the parameters set in the job

class. For example, the following commands behave differently:

% nc run -C verilog -e DEFAULT -- run_sim chip
% nc run -e DEFAULT -C verilog -- run_sim chip

In the first invocation, the option -e overrides the specifications for the environment to be used for the job. In the second

invocation, the environment is determined by the definition of the verilog jobclass.

Pre-Command and Post-Command Job Conditions
When a job is being submitted, a pre-condition and/or a post-condition can be specified.

• pre-condition: a script that is executed before the job is executed.

• post-condition: a script that is executed after the job has completed. The post-condition is typically used to perform cleanup,

such as deleting temporary files in /usr/tmp.

Example scripts are available in the following directories: $VOVDIR/etc/pre and $VOVDIR/etc/post.

Pre-condition

A pre-condition is executed before the job is run. It is invoked with a single argument: the ID of the job. A pre-condition is

executed with the same credentials as the job (userid, os-groupid) and is in the same directory of the job.

• If the precondition script fails by exiting with a status different from 0 (zero), the job will not be run and the exit status of the

job will be the exit status of the pre-condition script.

• If the exit status of the pre-condition script is within the range 201-215, the automatic rescheduling condition will occur and

the job will be rescheduled on a different host or on a different tasker.

Post-condition

The post-condition script is invoked with two arguments: the ID of the job and the exit status of the job. The post-condition is

executed with the same credentials as the job (userid, os-groupid) and in the same directory of the job.

• When the post-condition script is invoked, the job is still running.

• The post-condition is executed after the job, even if the job fails, but it is not executed if the pre-condition fails.

• The exit status of the post condition overrides the exit status of the job. It needs to explicitly return the exit status of the job

when that is the requested behavior (see the example scripts).

Submit Jobs with Conditions

Use the options -pre and -post with nc run to specify the pre- and post- conditions.

% nc run -pre $VOVDIR/etc/pre/pre_check.sh sleep 10
% nc run -post $VOVDIR/etc/post/post_cleanup.sh sleep 10

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.43

Log Files

The standard output from the pre- and post-commands is saved in log files. The location of the log files is determined by the value

of the environment variable NC_LOGDIR. If NC_LOGDIR is not set, the files are stored in the directory ./vnc_logs, relative

to the current launch directory.

In the following example, NC_LOGDIR is not set, and the run directory is ~/testrundir:

[goetz@goetz1 ~/testrundir]$ pwd
/home/goetz/testrundir
[goetz@goetz1 ~/testrundir]$ ls
vnc_logs
[goetz@goetz1 ~/testrundir]$ ls -a vnc_logs/
. .. 20210726 .precmd.000083865.log .precmd.000083885.log snapshots

The log files are created with zero size if the pre- and post-commands redirect all the output of the files. At the end of the job, if

these files are zero length, they are automatically deleted to reduce disk space overhead.

The log files are named according to the following rules:

.precmd.$jobID.log

.postcmd.$jobID.log

The pre- and post-command log files can optionally be located in the same directory as the job logfile. For example:

nc run -pre "myprecommand > @JOBLOGDIR@/@JOBID@_pre.out" -l path/to/an/existing/
directory/mycommand.out -- mycommand
nc run -post "mypostcommand > @JOBLOGDIR@/@JOBID@_post.out" -l path/to/an/existing/
directory/mycommand.out -- mycommand

This would result in the respective pre- and post-command logfiles being written to the directory path/to/an/existing/

directory.

Note:  When using the nc run command after forgetting jobs that have pre- and/or post-commands, it does

not automatically remove the pre- and post-command .log files. If these files are not zero length, they must be

removed manually.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.44

Schedule Job Submission

Queue Selection
A queue is a cluster, a group or farm of machines. Accelerator supports multiple queues that are managed by the same vovserver.

Queue names begin with the letters vnc.

Start a Queue

The command to start a queue is ncmgr start [queue-name]. Entering a queue name is optional. By default, if no name is

entered, the queue will be named vnc.

ncmgr start

vncmgr: Usage Message

USAGE:
        % ncmgr start [options]
OPTIONS:
        -h                      This help.
        -force                  Do not ask confirmation.
        -block                  Do not return to the shell or command prompt
                                after starting. This is only useful, and
                                required, when starting Accelerator as a
                                Windows service.
        -port  <port|mode>      Specify port number, port number list (colon
                                separated) or port mode. Modes are:
                                automatic - hash queue name into port number,
                                            do not start if port is
                                            unavailable.  The default queue
                                            name 'vnc' hashes to port 
                                            6271.
                                any - hash queue name into port number, try
                                      additional ports in increments of 1
                                      until an available one is found. The
                                      default queue name 'vnc' hashes to
                                      beginning port 11437.
                                Default: any
        -webport <port|mode>    Specify a dedicated web interface port for
                                HTTP and HTTPS protocols.  This port must be
                                configured to enable REST API v3 interface,
                                to enable the dashboard web UI page,
                                and to enable SSL.  A value of 0 directs 
                                VovServer not to open a web interface port.
                                Specify port number, port number list (colon
                                separated) or port mode.  Modes are:
                                automatic - hash queue name into port number,
                                            do not start if port is
                                            unavailable.  The default queue

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.45

                                            name 'vnc' hashes to web port 
                                            6271.
                                any - hash queue name into port number, try
                                      additional ports in increments of 1
                                      until an available one is found. The
                                      default queue name 'vnc' hashes to
                                      beginning web port 9695.
                                Default: Any
        -webprovider <provider>    Specify the provider for
                                   HTTP and HTTPS protocols.
                                   This must be either "internal" or "nginx".
                                   Default: "internal"
        -roport  <port|mode>    Specify read-only guest access web interface
                                port. A value of 0 disables this interface,
                                requiring all web interface users to log in.
                                Default: 0
        -q, -queue <name>       Name for queue (default is $NC_QUEUE if set,
                                and otherwise vnc).

        -dir <dir>              Directory of the server
                                (default $VOVDIR/../../vnc).
        -dbhost <host>          Host for database.
        -dbroot <path>          Path on database host for database files.
        -dbport <port>          Port of the database to listen for
                                connections.
        -v                      Increase verbosity.
EXAMPLES:
        % ncmgr start -port 6271
        % ncmgr start -port 6271:6272:6273:any -force
        % ncmgr start -q bigqueue -dir /remote/queues

Select a Queue Name

The default name of the Accelerator queue is vnc. Unless otherwise specified, all Accelerator commands act on the default queue.

To request a different queue one command at a time, by use the -q option with the nc command.

Example:

% nc [-q queue -name]run[run -options]command

Change the Default Queue with nc_queue

A different queue can be specified with using the -q option with the nc command.

To change the default Accelerator queue from vnc, set the environment variable NC_QUEUE to the queue name.

Example:

% setenv NC_QUEUE vnc_regr

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.46

Scheduled Jobs
Jobs that can not be dispatched immediately due to resource shortage, such as CPUs or software licenses, are put on the job queue.

Jobs are scheduled using the following rules:

• Scheduling is first determined by the FairShare mechanism. All active FairShare groups, all groups with queued jobs, are

ranked based on their distance from the target share of computing resources and the current number of running jobs.

The FairShare group that is farthest behind the target has rank 0 (zero) and is selected first for scheduling. If none of the jobs

from the FairShare group with rank 0 can be dispatched, Accelerator looks at the jobs for the FairShare group for rank +1 and

so on.

• For a given FairShare group, jobs with higher Priority are scheduled ahead of lower priority jobs.

• For a given FairShare group of a given priority, jobs are scheduled on a first-come first-serve basis.

To check the status of the jobs in the queue, use the command nc summary or check /jobqueue?action=buckets. This page gives

a report on all the classes of queued jobs (known as buckets):

• The characteristics of the bucket: user, group, priority, and tool.

• The number of jobs in the bucket and the age of the bucket: how long ago a job from that bucket was successfully dispatched.

• The resources the jobs are waiting for.

Understand Why Jobs are Queued

In addition to the overall information about the job queue and its buckets, you can also query individual jobs or sets, using the CLI,

GUI, or browser.

• From the command line:

% nc why jobID

• From the Accelerator GUI, double-click a job and navigate to the Why tab.

• From the browser, use the Jobs in Queue link from the Workload area of the home page.

The nc why command tries to give information about whatever object it is given, whether a job or a file, explaining why the

object is in its current state. For example, a job might be waiting for FairShare, or for hardware or software resources. A job could

be 'Invalid' because a predecessor dependency has failed, or it has been descheduled after submission, but before it was executed.

The information given as the main reason may not be the only reason a job is waiting. For example, if a job requests both

License:foo and Limit:bar, and both are exhausted, it will be hard to tell which is the main wait reason. To save CPU cycles, the

NC vovserver stops processing the resources list for additional wait reasons once the first one is encountered.

nc why

Show why a job is in the state it is.

nc: Usage Message

NC WHY:
        Show the reason for the current state of the specified job.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.47

USAGE:
% nc why [OPTIONS] [ID]

OPTIONS:
        -h                   -- This help
        -json                -- Format output as JSON (valid for QUEUED or
                                SCHEDULED jobs only).
        -jsondoc             -- Documentation for the output of the -json
                                command-line argument.

EXAMPLES:
        % nc why 12345
        % nc why -json 12345
        % nc why -jsondoc

Priority
The scheduling priority affects the order in which the jobs are scheduled. The range is 1 to 15.

Two types of priorities are supported:

• Scheduling priority: Determine the order in which jobs are scheduled. The range is 1(low) to 15(top).

• Execution priority: Influence the execution of the job on the remote machine. The range is 1(low) to 15(top).

There are conditions in which lower priorities supersede higher priorities, such as:

• For the jobs of a given user, higher priority jobs are scheduled before lower priority ones. However, due to the FairShare

mechanism, a lower priority job from one user may be dispatched before a higher priority job of another user.

• A low priority job will be dispatched before a high priority job if the resources for the low priority job are available while the

resources for the high priority job are not.

The priority of a job may also be used to decide which job can be preempted. Refer to the Accelerator Administration Guide for

more information about preemption.

Some priority levels have symbolic names, as listed in the following table:

Symbolic Name Numerical Level

Top 15

High 8

Normal 4

Low 1

In Accelerator, set the priority of a job at submission time with the option -p.

% nc run -p high sleep 10
% nc run -p 12  sleep 10
% nc run -p 12.low sleep 10

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.48

The priority can be set from the GUI using the Retrace Priority Flags dialog from the console. With the command vsr, you can

use the option -priority (which can be abbreviated to -p) as shown in the example below:

% vsr -p high target           # Use high scheduling priority.
% vsr -p h target              # Abbreviated form.
% vsr -p high.high target      # Set both scheduling and execution priority

The priorities, in conjunction with the resources.tcl file, also affects the amount of parallelism used during retracing:

#
# -- This is a fragment of a resources.tcl file.
# -- Typical priority setup.
#
vtk_resourcemap_set Priority:top     UNLIMITED
vtk_resourcemap_set Priority:high    50
vtk_resourcemap_set Priority:normal  10
vtk_resourcemap_set Priority:low      2

#
# -- This is another example of a resources.tcl file.
# -- Set unlimited parallelism for any level of priority.
# -- However all LOW priority jobs should go to the linux machines.
#
vtk_resourcemap_set Priority:top     UNLIMITED
vtk_resourcemap_set Priority:high    UNLIMITED
vtk_resourcemap_set Priority:normal  UNLIMITED
vtk_resourcemap_set Priority:low     UNLIMITED   linux

This default behavior can be modified with the resource management mechanism. Before a job is dispatched to taskers, its resource

list is augmented with one resource representing the priority. The name of the resource is Priority:xxx, in which xxx

represents the selected standard priority level.

The priority-based parallelism can be adjusted by changing the file resources.tcl.

The maximum priority that can be assigned by a particular user may be limited by the policy layer. To do so, edit the

policy.tcl file.

Priorities Relative to Previous Run

When specifying a priority, it is possible to use also the following symbolic values:

Symbolic Name Meaning

Same Same priority as before. If not defined, then use low priority.

Incr Increase previous priority by 1, without exceeding the maximum priority for the

user.

Decr Decrease previous priority by 1, but no less than low priority.

For example:

% vsr -p same -set All:drc
% nc rerun -p incr 000123456

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.49

Execution Priority

The execution priority takes the same values as the scheduling priority. This value is ignored on Windows, while on UNIX it is

used in a call to nice(). An example of passing this value to nice():

niceValue = 8 - executionPriority;

Note:  For TOP priority (15) nice(-7) is called; for LOW priority (1) nice(7) is called.

Distributed Parallel Support
Accelerator supports jobs that require multiple CPUs that can be located on different machines.

When a Distributed Parallel (DP) job is submitted to the scheduler, the job is divided into partial jobs. Each partial job can require

a different set of resources and cumulatively requires all the resources of the Distributed Parallel job. Accelerator schedules

each partial job separately. When all partial jobs have been dispatched, one designated partial job executes the actual Distributed

Parallel job. Depending on the submission method, there are several ways to take advantage of the computing resources assigned to

the other partial jobs.

Submission Methods

There are three common methods to submit Distributed Parallel jobs.

Use -dp to submit a Distributed Parallel job with N partial jobs

This method creates a Distributed Parallel job with two partial jobs. When both partial jobs have been dispatched, the active

partial job becomes the master and begins the execution of the command sleep 10, while the other partial job waits for

the previous partial job to terminate. By default, the active partial job is the first one.

For example:

% nc run -dp 2 sleep 10

This method is rarely used due to the burden it puts on the tool integrator to find a way to use the other partial jobs.

Use -dp N with vovparallel LSB_HOSTS

When all N partial jobs have been dispatched,the active partial jobs executes vovparallel, which sets the environment

variable LSB_HOSTS before invoking the master command. LSB_HOSTS contains the list of all hosts, possibly with

repetitions, currently set aside to run all partial jobs of the Distributed Parallel job. The master command is expected to use

rsh or ssh to reach out to those hosts and launch the appropriate software.

In this case, the active component displays the value of the LSB_HOSTS environment variable, showing the list of hosts

assigned to the DP job group.

For example:

% nc run -dp 2 -wl vovparallel lsbhosts printenv LSB_HOSTS

Use -dp N together with vovparallel clone

This method clones the specified wrapper script across the selected hosts. The wrapper script then executes the tool-

specific commands on the appropriate hosts and will have access to the Distributed Parallel environment variables and job

properties.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.50

For example:

nc run -dp 2 vovparallel clone mywrapper

In this case, the active partial job executes vovparallel clone ... which in turn connects to the other partial jobs to

invoke N similar instances of the script mywrapper on all partial jobs.

This is the preferred method because it doesn't require ssh/rsh functionality to activate the partial jobs, and it allows

Accelerator to track memory and CPU utilization for each partial jobs.

At execution time, each partialTool job sets some environment variables that help each partial jobs of the Distributed

Parallel job understand the role to play. The variables are:

• VOV_DP_TOPJOBID, with the VovId of the top level Distributed Parallel job

• VOV_DP_COUNT, the overall number of partial jobs used for the Distributed Parallel job

• VOV_DP_RANK, a number from 1 to VOV_DP_COUNT used to identify each partial jobs

Partial Job Rank and Resources

The active partial job, which starts the execution upon completion of dispatching of all partial jobs, is normally component number

1. This can be overridden by using the dp active argument.

% nc run -dp 8 -dpactive 8 uname -a

To define the resource list for each component of the Distributed Parallel job, use the -dpres option. This option takes a comma-

separated list of simple resources lists. The first element in the list is used for the first partial job, the second element for the second

partial job and so on. If there are more partial jobs than elements in the list, the last element in the list is used for all remaining

partial jobs.

In the following example, the first partial job is dispatched to a Linux machine, the second partial job to a macosx machine, and all

other partial jobs go to UNIX machines. The active partial job is number 2, which is the one running on macosx. The tasker that

is running UNIX would becomes the master for the Distributed Parallel job set. This also works with tasker names, or any other

tasker resource for that matter (kernel, RAM, etc.).

% nc run -dp 10 -dpres "linux,macosx,unix " -dpactive 2 vovparallel clone mywrapper

Distributed Parallel Properties

When a Distributed Parallel job is submitted, the partialTool job sets the following properties on the top-level job:

DP_ACTIVERANK The rank of the active partial job, which is the partial job that launches the top-level

job.

DP_ATTEMPTS The number of times the partial jobs have failed to be allocated within the allowed

time.

DP_COHORTWAIT This property is created when -nocohortwait is passed with nc run. This

instructs partialTool for each cohort task to finish when its subtask process has

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.51

finished rather than wait for the primary job to complete (which is the default

behavior). Using -nocohortwait sets DP_COHORTWAIT to zero (0).

Otherwise, the default is 1.

DP_FAILURE Explanation of failures.

DP_HOSTS List of hosts for the distributed parallel job . This property is set when the last

partial job is launched. The list may contain duplicates.

DP_PORT_X This is set by partial tool X to the pair host dp_port.

DP_SEMAPHORE Used by partial jobs to count the rank.

DP_SEMAPHORE2 A second synchronization counter used by partialTool.

DP_SETID The ID of the set that contains the list of partial jobs.

DP_WAIT Tells the partial job how long to wait before giving up the slot (default 30 sec).

DP_WAIT_MAX This is the maximum allowed value for DP_WAIT for a job (default 30 mins).

In addition to these properties on the top-level job, the following property is set on all other jobs:

DP_PART_OF The top-level job ID.

Properties can be accessed via the vovprop command or via the Tcl API with vtk_prop_get. Once obtained, they can be used

in conjunction with rsh/ssh, for example, to interact with the chosen hosts.

Using Different Resources and Jobclasses

When specifying DP jobs, you can stack jobclasses so that the primary and component jobs have different resources and job

classes.

This is done by setting VOV_JOB_DESC(dp,resources) and VOV_JOB_DESC(dp,jobclasses) to specify the resources and

jobclass labels for the master and subcomponent DP jobs.

For example, two jobclass definitions mycalibre_a.tcl and mycalibre_b.tcl are defined as follows:

::::::::::::::
mycalibre_a.tcl
::::::::::::::
# Copyright (c) 1995-2021, Altair Engineering
# All Rights Reserved.

# $Id: //vov/trunk/src/scripts/jobclass/short.tcl#3 $

set classDescription "My Calibre job resources"

puts "This is mycalibre jobclass"
if { [ info exists VOV_JOB_DESC(dp,resources) ] } { 
  set VOV_JOB_DESC(dp,resources) [ string cat $VOV_JOB_DESC(dp,resources) ",RAM/200
 CORES/2" ]

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.52

  set VOV_JOB_DESC(dp,jobclasses) [ string cat $VOV_JOB_DESC(dp,jobclasses)
 ",mycalibre_a" ]
} else { 
  set VOV_JOB_DESC(dp,resources) "RAM/200 CORES/2"
  set VOV_JOB_DESC(dp,jobclasses) "mycalibre_a"
}

proc initJobClass {} {
}
::::::::::::::
mycalibre_b.tcl
::::::::::::::
# Copyright (c) 1995-2021, Altair Engineering
# All Rights Reserved.

# $Id: //vov/trunk/src/scripts/jobclass/short.tcl#3 $

set classDescription "My Calibre job resources"

puts "This is mycalibre2.tcl"
if { [info exists VOV_JOB_DESC(dp,res,*)] }  { 
  puts "VOV_JOB_DESC(dp,res,*) already exists.  This is good!" 
} else { 
  puts "VOV_JOB_DESC(dp,res,*) does not appear to exist.  This is bad."
}

if { [ info exists VOV_JOB_DESC(dp,resources) ] } { 
  set VOV_JOB_DESC(dp,resources) [ string cat $VOV_JOB_DESC(dp,resources) ",RAM/400
 CORES/4" ]
  set VOV_JOB_DESC(dp,jobclasses) [ string cat $VOV_JOB_DESC(dp,jobclasses)
 ",mycalibre_b" ]

} else { 
  set VOV_JOB_DESC(dp,resources) "RAM/400 CORES/4"
  set VOV_JOB_DESC(dp,jobclasses) "mycalibre_b"
}

proc initJobClass {} {
}

You then call nc run as:

nc run -v 5 -C mycalibre -C mycalibre2 -e BASE -J jeffjob -dp 4 vovparallel clone
 sleep 1

This results in the primary job having the jobclass "mycalibre_a" and the resources "RAM/200 CORES/2" while the secondary

jobs have a jobclass of "mycalibre_b" and the resources "RAM/400 CORES/4".

Distributed Parallel Slot Timeout

With all of the methods described above, each partial job waits a finite amount of time for all other components to show up . If the

time elapses, then the partial job gives up, fails, and returns the slot to the farm. The wait time is 30 seconds by default, but this

may be larger if the farm is heavily loaded. The wait time can be specified using the dpwait option.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.53

Regardless of the specified wait time, there is a maximum wait time (default 30 mins) that can be specified by manually setting the

Distributed Parallel_WAIT_MAX property on the job. Use the P option with nc run, such as

-P DP_WAIT_MAX=12.0

vovparallel Clone

An example of a script used with vovparallel clone is available in $VOVDIR/training/vnc/

simple_dp_script.csh.

#!/bin/csh -f
#
# Example of a script to be used with  vovparallel clone.
# 
# Example of usage:
# % nc run -dp 4 simple_dp_script.csh
#

set sleepTime = 30
if ( $#argv > 1 ) then
   set sleepTime = $1
endif

# Each application has its own way to determine a rendezvous port.
# In this example, it is a fixed port.
set APPLICATION_PORT = 2345

if ( ! $?VOV_DP_RANK ) then
    echo "ERROR: Variable VOV_DP_RANK not defined."
    echo "       This script needs to be run with vovparallel clone ..."
    exit 0
endif

echo "Hello! I am component $VOV_DP_RANK"

if ( $VOV_DP_RANK == 1 ) then
    echo "This is the master. "
    echo "This should open a socket for communication e.g. $APPLICATION_PORT"
    set DP_HOSTS      = `vovprop GET $VOV_DP_TOPJOBID DP_HOSTS`
    echo $DP_HOSTS
    sleep $sleepTime
else 
    echo "This is the tasker"
    set DP_HOSTS      = `vovprop GET $VOV_DP_TOPJOBID DP_HOSTS`
    set masterHost = $DP_HOSTS[1]
    echo "This should communicate with master through ${masterHost}:
$APPLICATION_PORT"
    sleep $sleepTime

endif

exit 0

A more advanced script to use with vovparallel clone is available in $VOVDIR/eda/MentorGraphics/

vovcalibremt.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.54

OpenMPI Support

If you have an application that uses OpenMPI, you can submit it as a Distribute Parallel application (options -dp, -dpres, etc.) and

you need to use the wrapper "vovmpirun".

For example, if you want the application to run with N components (possibly on different hosts), you can submit it with:

% nc run -dp <N>  vovmpirun ./path/to/application

Note:  This support relies on the fact that OpenMPI uses ssh to start orted on the remote hosts. OpenMPI is forced

to use $VOVDIR/hidden_mpi/ssh.

Multiphase Support

Multiphase support is provided by two additional command arguments to nc run:

-multiphase [1|0] Enables multiphase jobs.

-mpres "resource string" Sets the resources that will be used for each phase.

The '%' is used as a delimeter for the resources of each phase; for example, -mpres "linux64 foo%linux64

bar:linux64 baz".

In addition, the autoRescheduleCount server configuration parameter needs to be set to the max number of job phases or

higher. The default is 4, so this applies to jobs with 5 or more phases.

Specifying Resources

By specifying the resources of each phase and designating that certain resources are only allocated to certain taskers, you can run

different phases of a job on different taskers. The following options can be set with the nc run command:

mpres RESLIST

Specification of the resources required by a multiphase job. The RESLIST specifies the resource lists for all phases of the

job with % characters delimiting the phases. The sublists of resources for each phase are percent sign delimited.

Example: -mpres "RAM/200 CORES/2%RAM/20 CORES/3"

mpres+ <rsrc>

Append one resource to the multiphase resource list. This option must follow the "-mpres" or "-mpres<n>" option,

otherwise the resources specified in "-mpres+" will be overwritten.

-mpres1 RESLIST, -mpres2 RESLIST, -mpres<n> RESLIST

Specify resources for a stage <n> of a multiphase job. The number <n> is in the range from 1 to 9.

Example:

-mpres1 "RAM/200"

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.55

-mpres2 "CORES/4 RAM/10"

For example: You have two taskers named tasker1 and tasker2. I want to run phase 1 and 3 on tasker1, and phase 2 on tasker2.

Your resources may look like:

vtk_resourcemap_set License:blue UNLIMITED License:blue_tasker1 
vtk_resourcemap_set License:red UNLIMITED License:red_tasker2 
vtk_resourcemap_set License:blue_tasker1 1 tasker1 
vtk_resourcemap_set License:red_tasker2 1 tasker2

You could then run a multiphase job as:

nc run -multiphase 1 -mpres "linux64 License:blue%linux64 License:red%linux64
 License:blue" -- -e BASE -D /home/jjmcwill/testDir/testMultistage.sh 

A multiphase job will have two new Job Properties set:

MPRESOURCES Contains the same resources passed in -mpres, and is used to reset the job

resources for each phase.

MPCURRENTPHASE Contains an integer indicating the current job phase. It starts at one, and has a max

value of 9.

The running job script will see an environment variable named VOV_JOB_PHASE which is set to the current phase. The script

writer will need to use that to decide what work to do for that phase.

• If the script exits with an exit code of 216, Accelerator will increment the job phase, change the job resources, and reschedule

the job to run again.

• If the script exits with an exit code of 0, the job is considered "Done", and MPCURRENTPHASE is reset to 1.

Failed Jobs

If a job fails during a phase with a code other than 0 or 216, it is considered FAILED and MPCURRENTPHASE will

not increment. If the job is invalided and re-run (such as, nc rerun -f JOBID), the job will re-run starting at

MPCURRENTPHASE and further phases will run if the job exits with code 216, as described above.

Logging

After the first phase is run, subsequent phases of the job will have the command rewritten so that the wrappers are passed -a -A,

telling the wrappers to append to the job log. This is so that all phases of the job get their stdout and stderr logged to the same file.

If this was not done, each phase of the job would overwrite the log, and you would only see the output from the last phase that was

run.

If Accelerator does not detect one of the standard vov wrappers at the beginning of the command line, it will assume the command

is not using a wrapper. In this case, it will look for the standard >; redirect symbol in the command and replace it with >>;.

REST Support

In the payload for submitting a job via REST, two new fields are allowed: multiphase and mpres. Setting multiphase =

True enables multiphase job support. Setting the mpres field behaves the same as described for the command line argument

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.56

described above. Re-running a multiphase job that has failed via the REST re-run API will behave similarly to rerunning a failed

multiphase job from the command line as described above.

Job Submission Arguments
Job submission can be affected by the value of the optional variables NC_RUN_ARGS and NC_RUN_ARGS, which specify a list

of arguments that are pre-pended and appended to the argument list passed to the submission command.

For example, if the variables are defined as follows:

% setenv NC_RUN_ARGS "-D"
% setenv NC_RUN_ARGS_AFTER "-jobproj myproj123"

Then the submission

% nc run -p high sleep 10

Becomes effectively

% nc run -D -p high -jobproj myproj123 sleep 10

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.57

Modify Running Jobs

Interactive Jobs
Interactive jobs require attention as they run, whereas batch jobs are run unattended.

Interactive jobs are only supported on UNIX in Accelerator. There are three types of interactive jobs, which are described in the

table below.

Interactive Job Example Option Example

Job that requires a X display. xterm -e vi abc -Ix % nc run -Ix xterm -e

vi abc

Job that requires a TTY with

remote control of signal

dispatching by means of Ctrl–C

and Ctrl–Z.

bash -Ir % nc run -Ir bash

Job that requires a TTY (stdin,

stdout) but keep local control of

signal dispatching by means of

Ctrl-C and Ctrl-Z. These are jobs

where you want redirect stdin to a

file.

n/a -Il % date | nc run -Il tr

'[a-z]' '[A-Z]'

You can limit the number of interactive jobs that can run concurrently, both at the global and user level. This is accomplished by

creating a limit resource and setting it as the interactive job limit in the vncrun.config.tcl file. For example:

set VOV_JOB_DESC(interactive,limit) Limit:interactive

Or, for a per-user limit:

set VOV_JOB_DESC(interactive,limit) Limit:interactive_@USER@ 

The resource must exist prior to adding these lines to the file.

Use the -splitsderr Option

Use the -splitsderr option to write the stderr output of the interactive job to stderr. The default is to write the job's stderr output to

stdout. Note that using this option will probably result in garbled terminal output due to intermingling of stdout and stderr outputs.

When to Use -Il and -Ir

If you use the option -Ir, then handling Ctrl-C and Ctrl-Z are done remotely on the remote host where the job is running. Use -Ir to

interact with the job.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.58

If you use the option -Il, then handling Ctrl-C and Ctrl-Z are done locally with the submission shell. Use -Il to redirect the stdout of

the job to a file or a pipe.

Interactive Job Logs

Logging is supported for interactive job. For example, the following command will produce a transcript in mylog.txt:

% nc run -I -l mylog.txt – /bin/bash 

Options to Use with Interactive Job Logging Conditions

-I option Only use for jobs that require attention as they run. -I should

not be used in scripted jobs where the intent is to capture

output. In general, each user should never have more than one

or two interactive jobs running concurrently.

-wl option Intended for when the job is launched at a terminal and real

time logging is required. -wl is preferred over -I when only

output tailing is required. A pseudo terminal server is not

employed (keyboard input is not processed) and the job is more

robust over network and window glitches.

-w option Preferred method for blocking a job and capturing its output in

a script. The job can be issued with a -w option. This blocks

until the job completes. The log can then be accessed via nc

info -l.

Note:  Neither -wl or -I should be used in scripts where there is no controlling terminal providing supervision.

For further information, please submit a support request at Altair Community.

Jobs That Require a DISPLAY: Option -Ix

To run a graphical tool interactively, use the option -Ix with nc run. This option adds the component +D(DISPLAY=

$DISPLAY) to the job environment.

• To use this option, the DISPLAY environment variable must be set for the display to refer to the host that you want to view.

• If DISPLAY does not contain a hostname component, such as "unix:0.0" or ":0.0", then nc run command substitutes the

hostname of the submission host. You must set a nc run value containing a hostname component to display the windows

on a host other than the submission host.

For most graphical tools , all interactions occur through the windows and no terminal is needed. Batch jobs, and those started with

only the -Ix option, do not have a pty allocated.

There are tools, such as Cadence NanoRoute and some simulators, which expect to have the regular streams connected to a pty,

and will not operate properly (that is, just exit) unless there is a pty. For such jobs, use the -Ir or -Il option to ensure a pty is

allocated.

Proprietary Information of Altair Engineering

https://community.altair.com/community?id=altair_community_home


Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.59

For tools such as simulators that interpret the INT (interrupt) signal, typically ^C, to stop the simulation and return to interactive

control, you may need to start in an xterm (x terminal) to gain full functionality. In this case, how to submit the job is similar to the

following example:

% nc run -Ix xterm -e vsim -do ...

Modify Scheduled Jobs
The nc modify command allows modifying fields in the scheduled jobs.

nc modify

vnc: Usage Message
  
   NC MODIFY:
          Modify scheduled jobs
  
   USAGE:
          % nc modify [OPTIONS] [jobId] ...
                                               (operate on job with that id)
          % nc modify [OPTIONS] [!] ...
                                               (operate on most recent job)
          % nc modify [OPTIONS] [-set setName] ...
                                               (operate on all jobs in setName)
          % nc modify [OPTIONS] [-selrule rule] ...
                                               (operate on all jobs selected by rule)
  
   OPTIONS:
        -h                            -- This help.
        -v                            -- Increase verbosity.
        -showfields                   -- Show fields that can be modified.
        -<FIELDNAME> <NEWVALUE>       -- Set the specified field to the
                                         specified value.
        -changegrab <RESMAP> [-]<N>   -- Change the quantity of a resourcemap 
                                         grabbed for a running job. May not
                                         combine with other options.
  
   EXAMPLES:
          % nc modify -jobclass short 0012345
          % nc modify -res License:xxx 0012345
          % nc modify -jobname superman 0012345
          % nc modify -res License:xxx -set MySet
          % nc modify -group /time/users !
          % nc modify -jpp smallest -numa pack 0012345
          % nc modify -changegrab Limit:foo -1 -selrule 'user=mary AND resources~foo'
          

wx modify

wx: Usage Message
  
   WX MODIFY:
          Modify scheduled jobs
  

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.60

   USAGE:
          % wx modify [OPTIONS] [jobId] ...
                                               (operate on job with that id)
          % wx modify [OPTIONS] [!] ...
                                               (operate on most recent job)
          % wx modify [OPTIONS] [-set setName] ...
                                               (operate on all jobs in setName)
          % wx modify [OPTIONS] [-selrule rule] ...
                                               (operate on all jobs selected by rule)
  
   OPTIONS:
        -h                            -- This help.
        -v                            -- Increase verbosity.
        -showfields                   -- Show fields that can be modified.
        -<FIELDNAME> <NEWVALUE>       -- Set the specified field to the
                                         specified value.
        -changegrab <RESMAP> [-]<N>   -- Change the quantity of a resourcemap 
                                         grabbed for a running job. May not
                                         combine with other options.
  
   EXAMPLES:
          % wx modify -jobclass short 0012345
          % wx modify -res License:xxx 0012345
          % wx modify -jobname superman 0012345
          % wx modify -res License:xxx -set MySet
          % wx modify -group /time/users !
          % wx modify -jpp smallest -numa pack 0012345
          % wx modify -changegrab Limit:foo -1 -selrule 'user=mary AND resources~foo'
          

To see a list of the fields that can be modified, use the -showfields option as shown below:

autoflow
autoforget
autokill
cmd
deadline
dir
env
fstokens
group
jobclass
jobname
jobproj
jpp
legalexit
nojournal
numa
preemptable
priority
res
res,aux
scheddate
submithost
systemjob
tool
xdur
xpriority

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.61

Restrictions and Consequences

The following fields can be changed any time, including when the job is running.

autokill Duration job runs before being killed automatically

fstokens FairShare tokens; when changed, moves the job to the proper FairShare bucket

xpriority Execution priority

jobname Can only be changed by job's owner

jpp Job placement policy

legalexit If the job is not running, the exit status is checked again with the new legal values;

if it does not match, the job is invalidated

numa Job placement non-uniform memory access policy; Linux only

preemptable Flag indicating the job can be preempted

priority Schedule priority

systemjob Flag that indicates it is a system job; not normally modified this way

xdur Expected duration

The following fields cannot be changed while the job is running. They can be changed by the job's owner or an administrator.

autoflow Flag that indicates a job should be skipped; if changed, job is moved to proper

bucket

nojournal Flag that turns off journal entries for the job

res Resources; if changed for a scheduled job, the job is re-queued

scheddate Date/time job was scheduled

The following fields cannot be changed while the job is running. They can only be changed by the job's owner (not an

administrator).

autoforget Flag that indicates the job will be forgotten after completion

cmd Command line of job; job is invalidated if changed

deadline The desired date/time the job should be completed

dir File system path where job runs; job is invalidated if changed

env Named environment of job; job is invalidated if changed

group FairShare group; if changed for a scheduled job, the job is re-queued

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.62

jobclass Resource group; if changed for a scheduled job, the job is re-queued

jobproj Project associated with job; if changed for a scheduled job, the job is re-queued

res,aux Aux resources; if changed for a scheduled job, the job is re-queued

submithost Host from which job is submitted

tool Name of tool associated with command

Modifying job fields will be restricted if a VovUserGroup named System:jobmodify exists. If this VovUserGroup exists, only users

who are a member of the group will be able to modify job fields. Users not in the VovUserGroup will receive an authorization

error.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.63

FairShare Groups

In Accelerator, FairShare groups are managed by either the information in the vnc.swd directory that contains the policy.tcl

file, or the vovfsgroup utility. Every user has a default FairShare group, which is set in the policy.tcl file. Use nc run

with the option -g to select a different group. An error occurs if the user specifies a non-existent group or a group to which the user

does not belong.

For example:

% nc cmd vovshow -users
% nc run -g /time/regression sleep 10
% nc run -g xxxx sleep 10
nc: USER ERROR: No such group defined: 'xxxx'

FairShare Subgroups

Subgroups can be specified by using the -sg option. Subgroups can be created at submit time as opposed to groups , which must be

defined ahead of time. Subgroups allow a user to allocate shares of computing resources to subsets of their own workload.

For example:

% nc run -sg subgroup sleep 10                      (/time/users.john:subgroup)
% nc run -g /time/regression -sg subgroup sleep 10  (/time/regression.john:subgroup)

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.64

Job Placement Policies

Accelerator supports multiple job placement policies: methods to choose on which tasker to run a job.

Note:  These policies are advisory only. Some job scheduling scenarios will be handled by the scheduler with

overrides that ignore the user-specified job placement policy.

Job Placement Policy Description

fastest This is the default job placement policy: among all the taskers

that can execute a job, choose the one with highest power. The

assumption is that a tasker with higher power can complete the

job faster.

slowest Among all the taskers that can execute a job, choose the

tasker with the least power. This policy may be useful to run

regression jobs on older, less powerful hardware.

first As soon as the scheduler finds a tasker to execute the job, it

uses that tasker without checking all other taskers. This policy

is useful for lowering the scheduling effort.

smallest Among all the taskers that can execute a job, choose the tasker

with the least amount of unused slots and unused RAM ((MB

of unused RAM) + 16000*(Number of unused cores)). This

policy tends to pack the jobs on machines that are already busy,

thus keeping idle machines available if a large job is submitted.

smallram Among all the taskers that can execute a job, choose the tasker

with the least amount of total RAM. This policy is useful to

pack the jobs on the smaller machines first, which keeps large

machines available if a large job is submitted.

largest Among all the taskers that can execute a job, choose the tasker

with the most amount of unused slots and unused RAM ((MB

of unused RAM) + 16000*(Number of unused cores)). This

policy tends to spread the jobs on idle machines. In most cases,

this policy may not be the most effective.

Accelerator also supports three CPU-affinity policies for machines that have a NUMA architecture. These policies apply to jobs

after they are placed on a specific tasker. This is for Linux only.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.65

CPU-Affinity Policy Description

pack NUMA control: assign the job to a NUMA node with the least

number of available resources that will fit the job. If none of

the NUMA nodes have sufficient job slots and RAM, the job

will be allowed to run on as many NUMA nodes as needed to

satisfy its resource requirement.

spread NUMA control: assign the job to a NUMA node that has the

largest number of available resources.

none NUMA control: allow Linux to place jobs. The Linux CPUs

Allowed affinity list will be all the CPUs on the system

(default).

Choose the Job Placement Policy

At submission time, the option -jpp can be used to specify, at most, one of the job placement policies and one CPU-Affinity policy.

The list is comma-separated. If multiple conflicting policies are specified, the last policy on the list will be used.

To place jobs on the same machines, use first or smallest.

% nc run -jpp slowest ./my_not_so_important_job
% nc run -jpp slowest,spread ./my_not_so_important_job
% nc run -jpp smallest,pack ./my_job
% nc run -jpp smallram  ./my_job

In a job class, the value of VOV_JOB_DESC (jpp) can be set:

# Fragment of a jobclass definition:
set VOV_JOB_DESC(jpp)  "smallest,pack"

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.66

Clean Up Log Files
All log files are normally stored under the subdirectory ./vnc_logs. To remove all obsolete log files in the current working

directory, use the nc clean command.

nc clean
This command cleans up obsolete log files and environment files that have been generated by jobs submitted to the scheduler.

nc: Usage Message

NC CLEAN:
    This command cleans up obsolete log files and environment files
    that have been generated by jobs submitted to the scheduler.
    By default the command cleans the current working directory
    (i.e. removes logs and environment files of the jobs executed in the
    current working directory).

    If a list of directories is provided, the command will clean up
    the files in those directories instead.

USAGE:
     % nc clean [OPTIONS] [LIST_OF_DIRS]

OPTIONS:
    -deep N     -- Clean the jobs from all directories in which the user
                   has executed jobs in the past N days. The directories
                   are found from the journals.
    -dir <dir>  -- Specify additional paths to check.
    -h          -- Help usage message.
    -nozap      -- Do not 'zap' isolated nodes. Allows the cleaning of the 
                   current directory to proceed faster.
    -P PERIOD   -- Install a periodic job to run the cleaning automatically.
    -R          -- Clean the directories recursively.
    -v          -- Increase verbosity.
    -zap        -- Do 'zap' of isolated nodes (see man vsz for more info).
    
EXAMPLES:
    % nc clean -h
    % nc clean
    % nc clean -dir /tools/logs/VNC_LOGS -dir /scratch/logs/VNC
    % nc clean .  /tools/logs/VNC_LOGS  /scratch/logs/VNC
    % nc clean -zap
    % nc clean -deep 10
    % nc clean -deep 3 -P 3d

Comments

Use the option -R (recursive) to also clean up the subdirectories.

% nc clean -R

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.67

From within scripts, it is recommended to use the option -nozap, which tells nc clean to skip the calling of the zapping utility

vsz, which can be expensive in terms of time and load on the server.

% nc clean -nozap

If you do not remember the directories where you have run jobs, you can use the deep cleaning option -deep that automatically

looks in the journals to find out all the directories in which jobs have been run. This option accepts an integer parameter that

specifies the number of days to go back in the journals. The following example will go back 10 days:

% nc clean -deep 10

To have Accelerator automatically run nc clean every day, schedule a periodic job. For example, the following command

schedules a cleanup once a day in the current directory:

% nc clean -P 1d

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.68

Debug Jobs without Running Accelerator
On occasion, jobs that run successfully outside of Accelerator fail when run through Accelerator. When this occurs, mostly likely

the setups are not the same: the environment, inputs or other parameters may be different, a misconfiguration or there is a problem

with NFS.

To resolve such issues, using the command nc debug can show you the steps that Accelerator takes to run the job.

When some jobs are not behaving as expected, use the command nc debug jobId to get the steps that Accelerator uses to run

the job.

nc debug

vnc: Usage Message
  
      NC DEBUG:
   If a job appears to behave differently when executed by NC
   than when it runs without using NC, you can use this command
   to debug the problem.
  
   The command gives you the step-by-step description of what
   NC does to run the job, so that you can do
   the same thing without going through NC.
  
   For example, if you find a job runs fine without NC, but fails
   in NC, it might simply be that the environment is not set correctly.
   By following the steps provided by this command, you will be able
   to determine what is wrong.
  
      USAGE:
   % nc debug <jobId>
  
      OPTIONS:
   -h                   - Show this message
      

Debug Jobs Example

Following the steps in the example below, modified or as is, you can check if you are running the same job in the same setup as it

would be in Accelerator.

By eliminating vovserver and vovtasker from the picture, it very often becomes obvious or easy to figure out what the problem is.

Sometimes it is a missing environment variable. Sometimes it is an NFS problem, etc. In the unlikely event that run the same job

successfully following these steps, there might be something missing or wrong in how Accelerator runs the job, or something is

misconfigured.

Example:

% nc debug 01597942

# This job was run on host bear. To run the same

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.69

# job without going through Accelerator, please follow these steps:

# 1. Logon to the machine (if necessary)
rsh bear -l john     ; # or ssh bear

# 2. Change to the directory
cd /home/john

# 3. Switch to the environment
ves SYNOPSYS

# 4. Run the job without wrappers or redirection
./myscript input1 input2 

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.70

Job Runtime - Monitor and Profile
When a job is running through a vovtasker, the tasker automatically monitors RAM and CPU utilization of the job, including all of

its children.

Job statistics are sampled about once a minute. This data sampling rate does not capture jobs that complete in less time than the

than the sampling period.

The MAXRAM is expressed in Megabytes (MB), where 1MB = 1<<20 bits (left-shift decimal "1" 20 times is the binary equivalent

of 1 million. The CPU time is stored in ms (milliseconds), but is expressed in s (seconds).

CPU Progress and Run Status Indicators

Accelerator monitors CPU and RAM utilization for all the running jobs. The CPU utilization information is available in four fields:

CPUTIME The total accumulated CPU time in milliseconds.

CPUPROGRESS Percentage of CPU accumulated in the unit time. For example, if in 60 seconds a

job uses 60 seconds of CPU time, then the CPUPROGRESS is going to be 100.

This field can be 0 (zero) for jobs that are stuck: holding onto the CPU resource but

not running, which makes the CPU unavailable for other jobs. This field can also be

greater than 100 for multi-threaded jobs.

LASTCPUPROGRESS A timestamp indicating the last time CPU usage has increased. This is used to

identify stuck jobs.

RUNSTATUS A descriptive text field that shows how well the job is doing. Some typical values

are Good, Paging, NoCpu. The complete list of values is shown below.

Table 1: Values of the RUNSTATUS Field

n/a Insufficient information to determine CPU progress. Typical for jobs that have just started.

Good The progress is greater than 70%

Medium Progress is between 10% and 70%

Poor Less than 10% CPU utilization, but no swapping of pages.

Paging The progress is less than 10% and the job is swapping at a rate greater than 1000 pages per

second.

NoCpu The job is not accumulating any CPU time.

Susp The job is suspended.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.71

Job Profiling
When job profiling is activated, Accelerator tracks and plots performance statistics over the time the job is running.

The profiling plots show, in order, the following performance data over time:

1. RAM usage

2. VM size

3. CPU utilization

4. Cumulative Read I/O

5. Cumulative Write I/O

6. License checkouts (one plot per license)

The output of job profiling is a set of plots as shown below:

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.72

Figure 2:

To activate profiling on a single job, use the option -profile of nc run as shown below:

% nc run -profile myJob

To view a profile, use the browser interface and visit the specific page for the job.

To activate job profiling for a jobclass, set the following:

# In a job class definition
set VOV_JOB_DESC(profile) 1

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.73

To activate job profiling for all jobs, use the file $VOVDIR/local/vncrun.config.tcl and add a line like this:

# In the file $VOVDIR/local/vncrun.config.tcl
...
set VOV_JOB_DESC(profile) 1
...

Job I/O Profiling

The I/O job profiling feature enables Accelerator to track and plot performance statistics over the time the job is running. A

summary of this information is displayed after the job completes by use of the nc info –ioprofile JOBID command.

This feature can only be activated with a Mistral license, which must be installed at $VOVDIR/local/mistral.dat. Check

with your system administrator for accessing and installing the license. You can get more information about the Mistral license at

Altair License Management.

The summary information shows I/O performance metrics broken down by filesystem. The statistics are aggregated from all

processes in a job. The statistics reported include:

• Data Xferred – The total number of data transferred in the specified I/O direction.

• Throughput – A data rate calculated as a ratio of total data transferred divided by job run time.

• Effective BW - A data rate calculated as a ratio of total data transferred divided by total latency.

• I/O Ops – The number of I/O operations issued by the job for the specified I/O direction.

• Total Latency – The elapsed time for all I/O system calls, summed.

• Latency/Op - A ratio of total latency and number of I/O operations for the specified I/O direction

I/O Profiling Results - Read 

Filesystem      Data Xfered     Throughput      Effective BW    I/O Ops         Total
 Latency   Latency/Op 
/dev            1048576000B     349525333B/s    11351MB/s       1000           
 92372us         92us/op 
/users/kfeind   0B              0B/s            N/A             0               0us  
           N/A 

I/O Profiling Results - Write 

Filesystem      Data Xfered     Throughput      Effective BW    I/O Ops         Total
 Latency   Latency/Op 
/dev            0B              0B/s            N/A             0               0us  
           N/A 
/users/kfeind   1048576000B     349525333B/s    500MB/s         1000           
 2094136us       2094us/op 

Filesystems Accessed 

Filesystem      Type            Source 
/dev            devtmpfs        devtmpfs 
/users/kfeind   nfs             sdc-storenado1:/export/user_home/kfeind 

Proprietary Information of Altair Engineering

../../../bookshelf/topics/chapter_heads/altair_license_mgmt.htm


Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.74

To activate profiling on a single job, use the option -profile of nc run as shown below:

% nc run –ioprofile ./myjob 

To view the summary profiling statistics, invoke the following CLI command after the job has completed.

% nc info –ioprofile  JOBID

To view a graphical display of I/O time series statistics while the job is running, invoke the nc gui client as follows.

Note:  This is a preview feature.

% nc gui –ioprofile JOBID

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.75

Monitor the Workload

List Jobs
To show the status of jobs recently submitted, use nc list.

The default is to show up to 20 jobs submitted by the user running nc list. With some options, described below, you may also

view jobs belonging to other users.

Note:  This command can impose a significant load on the system. Please review the help info below for suggestions

how to obtain job info efficiently.

The Accelerator Administrator may have configured methods to mitigate this load, including caching.

nc list

List jobs currently in the system.

nc: Usage Message

NC LIST:
        List jobs currently in the system.
        The list is ordered by increasing job id,
        normally the same as the submission order.

        The behavior can be controlled by $VOVDIR/local/vnclist.config.tcl
        and by the variables
        NC_LIST_FORMAT
        NC_LIST_CACHE_DIR
        NC_LIST_CACHE_TIMEOUT

NOTE ON CACHES and MORE EFFICIENT METHODS:
        This command may use local, client-side caches.
        Caches are activated by setting NCLIST(cache,enable) to 1
        in the file $VOVDIR/local/vnclist.config.tcl

        These caches can significantly reduce
        the load on the scheduler in the case of repeated calls.
        The default timeout for these caches is 30s.

        There are better ways to get information about jobs, especially in
        scripts.  Please consider the following efficient methods:
        % nc getfield $JOBID ...           
              -- To get specific info about a job
        % nc cmd vovset count SETNAME ...   
              -- To count jobs in sets by status
        % nc wait ...  
              -- To block waiting for jobs to complete

USAGE:

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.76

        % nc list [OPTIONS]

OPTIONS:
        -O <format>       -- Specify a different Output format.
                             Refer to the manual for a description
                             of formats. For experts.
                             This can also be specified via the NC_LIST_FORMAT
                             environment variable.
        -O+ <format>      -- Add one or more fields to the default output
                             format.
        -H                -- When used with -O, show header line.
        -l                -- Long format: show group, user, host,
                             and full command.
        -L                -- Very long format: show start and end dates,
                             duration.
        -c                -- Count jobs: this option affects the output
                             format.
                             It adds a column with the the position of each
                             job in the list of jobs to be shown.
        -S <rule>
        -select <rule>
        -selrule <rule>   -- 3 ways to specify the selection rule. For
                             experts. The clause 'isjob' is added to the
                             selection rule.
        -S+ <rule>        -- Alternate (OR) selrule; jobs that match any
                             selrule will be shown. The clause 'isjob' is
                             added to the selection rule.

        -subjobs          -- Show also sub-jobs too
                             (e.g. jobresumer, partialtool)
        -systemjobs       -- Show also system-jobs
        -alljobs          -- Show all types of jobs,
                             including sub-jobs and system-jobs.
        -a                -- Show jobs for all users.
        -r                -- Show only running jobs.
        -f                -- Show only failed jobs.
        -s                -- Show only suspended jobs.
        -q                -- Show only queued jobs.
        -u <user>         -- Show jobs belonging to given user. Ignored if
                             used with -selrule or -set option.
        -first <index>    -- Show jobs starting at index. By default,
                             first index is 1.
        -last  <index>    -- Show jobs ending at index. By default, last
                             index is -1, which is the last job.
        <num>             -- Show first <num> jobs if <num> is positive.
                             Show last <num> jobs if <num> is negative number
        -J <jobName>      -- Show only jobs with given job name.
                             WARNING: this option can place a high load on
                             the Accelerator server in large workload
                             environments due to the need to compare strings
                             for each job, it is recommended to avoid calling
                             this unless truly required.
        -set <setName>    -- Show only jobs in the given set.
                             This option can be repeated to show the content
                             of multiple sets.  If a job belongs to multiple
                             sets, it may be reported more than once.
        -dir <directory>  -- Show only jobs in the given directory.
        -cache            -- Use result cache. It is recommended to utilize
                             the result cache to reduce the load on the
                             Accelerator server
                             in cases where list queries are scripted.
                             By default, the cache expires after 30s.
        -v                -- Increase verbosity.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.77

        -h                -- Print brief usage.

EXAMPLES:
        % nc list
        % nc list -c
        % nc list -a -l
        % nc list -O "@USER@ @GROUP@ @DURATION@" 
                          -selrule "duration>60"
        % nc list -H -O "@USER@ @GROUP@ @DURATION@" 
                          -selrule "statusnc==Failed"
        % nc list -dir .
        % nc list -a -r -s
                          (Show all running and suspended jobs)
        % nc list -selrule "duration>600 statusnc==Running"
        % nc list -first 10 -last 20
        % nc list 5
        % nc list -10
    

Summary of All Jobs
The command nc summary is used to show a short summary of jobs in the system.

nc: Usage Message

NC SUMMARY:
        Get a summary report for all of my jobs.
USAGE:
        % nc summary [options]

OPTIONS:
        -a,  -all              -- Print report for all users.
        -all_users             -- Same as -a
        -all_sets              -- Show all sets.
        -b                     -- Show buckets.
        -h                     -- Help usage message.
        -P                     -- Print report for all projects.
        -p PROJECT             -- Print report for given project (repeatable).
        -set SETNAME           -- Show report for just that set.
        -u USER                -- Print report for given user (repeatable).
        -w                     -- Show detailed info about wait reasons.
        
    

Following is an example of the output of nc summary:

% nc summary -all
Altair Accelerator Summary For All Users
TOTAL JOBS       2101      Duration: 6h33m
Done           2005
Queued           95
Running           1

JOBS   GROUP    USER     TOOL        WAITING FOR...
50   groupA   john     vtclsh     ' License:fintronic#1'
45   groupB   mary     vtclsh     ' License:fintronic#1'

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.78

To view the summary of jobs for a specific user, use option -u name with the command nc summary:

% nc summary -u john
Altair Accelerator Summary For User john
TOTAL JOBS       1101      Duration: 2h30m
Done           2005
Queued           50
Running           0

JOBS   GROUP    USER     TOOL        WAITING FOR...
50   groupA   john     vtclsh     ' License:fintronic#1'

Notification of Job Status
The Accelerator vovnotifyd notification daemon accesses the server's event stream and then sends a notification for jobs that

request it.

To enable this notification, the MAILTO property must be set: use the option -m or -M option with the nc run command. An

example is shown below:

% nc run -m sleep 10
% nc run -M ":ERROR"  simulate chip.spi

The format of the property of MAILTO can be configured as follows:

recipientList 
recipientList : verbList
recipientList : ALL
: verbList

recipientList is the list of the e-mail recipients. verbList is the list of verbs for which notifications must be sent. The supported

verbs are listed below.

DESCHEDULE - Job has been dequeued.
DISPATCH   - Job has left the queue and has been routed to an execution host. 
ERROR      - Job has exited with a failure.
FORGET     - Job has been forgotten.
RESUME     - Job has been resumed.
STOP       - Job has exited successfully.
SUSPEND    - Job has been suspended.

If the recipientList is empty, a notification is sent to the owner of the job. If the verbList is empty, then a notification is sent only

when the job terminates.

For example:

john : ERROR   - Send mail to the user 'john' if the job terminates in error.
: STOP ERROR   - Send mail to the job owner when the job terminates.
john mary: ALL - Send mail to the users 'john' and 'mary' for anything that happens
 to the job.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.79

Change the MAILTO Property After Job Submission

To change the MAILTO property, use the vovprop utility. The following are examples of getting, setting, and deleting the

property:

% nc cmd vovprop get 000012345 MAILTO
% nc cmd vovprop set -text 000012345 MAILTO "mary : STOP ERROR"
% nc cmd vovprop delete 000012345 MAILTO

Invoke the GUI
Job execution can be monitored with nc gui.

This command opens a monitoring tool; no interactive capabilities (such as configuration or running jobs) are provided. Interactive

capabilities are available with nc cmd vovconsole.

nc gui

Show a grid view of the jobs in a specified set.

nc: Usage Message

NC GUI:
        Show a grid view of the jobs in a specified set.
USAGE:
        % nc gui [OPTIONS] &
OPTIONS:
        With no options, the GUI shows all jobs of the current
        user.

        -all
        -a                  -- Show all jobs.
        -u <user>           -- Show jobs for specified user.
        -s <SETNAME>
        -set <SETNAME>
        -setname <SETNAME>  -- Show specified set.
        -timeout <TIMESPEC> -- Stop async update after this time (default 2h).
        -submit             -- Activate job submission dialog
        -limitGui <N>       -- Override the limit of 3 max GUI per user.

        -batch <file>       -- Execute specified file after the GUI is ready

        -metrics            -- Show scheduler metrics.
        -metricsConfig <file> -- Use specified metrics configuration file.
        -taskers            -- Show compact taskers monitor.
        -fontsize <size>    -- Specify the normal font size. Default is 10.
                               Legal range is 3 to 36.

        -title <title>      -- Choose title of X11 window.
        -ioprofile <jobId>  -- Show job I/O profiling timeseries statistics 
                               plots. The job must have been submitted with 
                               the -ioprofile option. (preview feature)        

EXAMPLES:

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.80

        % nc gui &                  -- Show all my jobs
        % nc gui -all &             -- Show all jobs.
        % nc gui -set SomeSetName   -- Show specified set.

        % nc gui -submit            -- Job submission dialog.
        % nc gui -limitGui 5        -- Allow you to run up to 5 "nc gui" (default 3)

        % nc gui -metrics &         -- Show the scheduler metrics.

Figure 3: GUI that opens after entering nc cmd vovconsole &

Icons
All icons provide descriptions that you can find by hovering over the icon.

Run/Rerun Update the current object, whether a set or a node. All jobs

necessary to bring the object up to date are scheduled for

execution. The jobs that can run now start running.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.81

Stop/Dequeue Un-schedule a job that is not yet running or abort a retrace

request. Running jobs are unharmed and keep running. Graceful

Stop. Cyan/asked-to-run jobs will turn back purple/invalid.

Stop/Dequeue Stop a running job or a retrace request. This does the same

thing as the dequeue above, but in addition kills the selected

running jobs. It's a forced stop. Running jobs that have been

stopped will turn red.

Navigate Backward Display the previous set that you were browsing.

Navigate Forward Display the next set that you were browsing, when you already

went backward.

Refresh Recompute the current set based on the selection rule.

Find Finds files or jobs in the trace. There are two identical Find

icons. The left one close to the name of the set being displayed

triggers changing the setname box into a search box for the

current graph. The other on the extreme right brings up a new

dialog that lets you search for files or jobs.

Invalidate Invalidates the selected nodes.

Try Validate Tries to validate the selected jobs and its downcone.

Force Validate Equivalent of make -t.

Forget Removes the job/file from the graph of dependencies. This

does NOT remove the file from disk. It just removes it from the

dependencies allowing blocked jobs to start. Usually rerunning

vovbuild is enough to bring the dependency back.

Fit Reduces/expands the graph so that it fits in the window.

Zoom In Expands the graph to better see some nodes.

Zoom Out Reduces the graph to see more nodes.

Select Font Size Reduce or enlarge the size of the characters in the nodes.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.82

Vertical View Display the current set using the "graph" widget.

Horizontal View Display the current set using the "horizontal" widget.

Grid View Display the current set using the "grid" widget.

Stats View Display the current set using the "stats" widget.

Graph Settings Set the various preferences for Weight Driven Placement. This

takes you to the Graph tab of the Preferences dialog.

Show the Hosts/Taskers
The command nc hosts shows the list of the hardware resources currently connected to an instance of Accelerator. These

hardware resources are called "taskers" in Accelerator.

nc: Usage Message

NC HOSTS
    Show taskers that are currently in the cluster along with tasker metadata.

    The default output includes:
    NAME LOAD STATUS RUN/SUSP SLOTS HEARTBEAT RESERVATIONS MESSAGE

    Each tasker takes on the name of its host by default.

    The "RUN/SUSP" column shows running jobs and suspended jobs,
    respectively.

    The "SLOTS" column shows total job slots.

    The heartbeat is the age of the most recent heartbeat received by the
    vovserver for that specific tasker.

    The reservations column shows shorthand representations for who or what
    the tasker is reserved and the time remaining for the reservation. The
    shorthand format is TYPE:NAME, where TYPE is one of:
    G (group), I (ID), B (bucket), C (jobclass), P (project), or U (user).

USAGE:
    % nc hosts [OPTIONS]

OPTIONS:
    -a              -- Show all known hosts (used with -m).
    -ALL            -- Show resources for each tasker.
    -c              -- Show consumable resources (e.g. RAM and CPUs).
    -f              -- Show list of tasker fields.
    -h              -- Help usage message.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.83

    -hw <HW>        -- Show only taskers that match HW constraints.
    -INFO           -- Same as -O ...fields about host, arch, model, ...
    -LOAD           -- Same as -O ...selection of fields about load...
    -m              -- Show machine parameters (RAM, CPUfreq, ...)
    -O <fmt>        -- Specify output format. The format string can contain
                       elements like @FIELDNAME@ or @FIELDNAME:WIDTH@ where
                       a negative width means left-align and a positive width
                       means right-align.
    -r              -- Show status and resources for each tasker.
    -rl             -- Show resources (legacy: pre-2013.03 format).
    -RAM            -- Same as -O "@NAME@ RAM/@RAM@ RAMFREE#@RAMFREE@
                                   RAMTOTAL#@RAMTOTAL@"
    -rule <SELRULE> -- Show only taskers that match the given selection rule.
                       Use "vovselect fieldname from taskers" for the complete
                       list of fields that can be used in the rule.
                       Example rules:
                            "status==READY"
                            "status!=OVRLD slots>8"
                       Can accept multiple constraints.
    -SLOTS          -- Same as -O "@NAME@ SLOTS/@SLOTS@ SLOTSTOTAL#@SLOTSTOTAL@
                                   CORES/@CORES@ CORESTOTAL#@CORESTOTAL@"
    -slowdown       -- Used only for testing.

EXAMPLES:
    % nc hosts
    % nc hosts -m
    % nc hosts -a -m
    % nc hosts -hw 'RAMTOTAL>18000'
    % nc hosts -f
    % nc hosts -O "RAMFREE#@RAMFREE@ SWAP/@SWAP@ M=@MODEL@"
    % nc hosts -O "@I:4@ @NAME:-14@ @STATUS:-8@ @HOST@ "
    % nc hosts -RAM
    % nc hosts -hw 'RAMTOTAL>18000' -RAM
    % nc hosts -ALL | grep -A8 ^lnx001
    % nc hosts -rule "cores>4 ramtotal<20000" -O "@name@ @corestotal@"
    

An example is shown below:

% nc hosts
# TASKER        LOAD STATUS   JOBS  MESSAGE
1 alpaca       0.01 ready    0/1   Workstation idle
2 bison        0.07 ready    0/1   Workstation idle
3 blue-srv     0.15 ready    0/1   
4 cayman       0.00 susp     0/1   Off hour tasker (will start at 19:00)
5 cheetah      0.00 ready    0/1   Workstation idle
6 comet-srv    0.23 ready    0/1   
7 everett      0.00 ready    0/2   
8 jupiter-srv  0.07 ready    0/2   
9 mars-srv     0.06 ready    0/2   
10 moon-srv     0.09 ready    0/1   

% nc hosts -r
...
% nc hosts -m
...

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.84

Use vovselect for Querying

The nc hosts command can be used for querying, but it can sometimes take several minutes to return results, which causes

some nodes to show up as "N/A". nc hosts will query the server and return significant amounts of data, but the server loading

will directly affect the response time of the command.

In order to avoid such delay, you can use vovselect to run the query, as it prefilters the output server-side before returning it to

the client.

Use the table below to understand the mapping of fields between the nc hosts and vovselect commands.

nc hosts vovselect from TASKERS vovselect from HOSTS

ARCH ARCH ARCH

CAPABILITIES CAPABILITIES NA

CAPACITY CAPACITY CPUS

CLASSRESOURCES CLASSRESOURCES NA

CLOCK CLOCK CPUCLOCK

COEFF COEFF NA

CONSUMABLES CONSUMABLES NA

CORES CORESAVAIL NA

CORESAVAIL CORESAVAIL NA

CORESTOTAL CORESTOTAL CPUS

CORESUSED CORESUSED NA

CPUS CPUS CPUS

CURLOAD CURLOAD NA

DOEXEC DOEXEC NA

DONETINFO DONETINFO NA

DOPROCINFO DOPROCINFO NA

DORTTRACING DORTTRACING NA

EFFLOAD NA NA

EXTRAS EXTRAS NA

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.85

nc hosts vovselect from TASKERS vovselect from HOSTS

FULLINFO FULLINFO NA

GROUP GROUP NA

HB NA NA

HBPP NA NA

HEARTBEAT HEARTBEAT NA

HOST HOST NAME

ID ID NA

IDINT IDINT NA

LASTJOBID NA NA

LASTUPDATE LASTUPDATE NA

LIFETIMEJOBS LIFETIMEJOBS NA

LOAD1 NA NA

LOAD15 NA NA

LOAD5 NA NA

LOADEFF NA NA

MACHINE MACHINE MACHINE

MANUALPOWER NA NA

MAXLOAD MAXLOAD NA

MESSAGE MESSAGE NA

MESSAGESYS MESSAGESYS NA

MESSAGEUSER MESSAGEUSER NA

MODEL MODEL NA

NAME NAME NAME

NUMJOBS NA NA

OSCLASS OSCLASS NA

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.86

nc hosts vovselect from TASKERS vovselect from HOSTS

PERCENT PERCENT NA

PERSISTENT PERSISTENT NA

PID PID NA

POWER POWER NA

RAM RAM NA

RAMFREE RAMFREE NA

RAMTOTAL RAMTOTAL RAMTOTAL

RAWPOWER NA NA

RELEASE RELEASE NA

RESERVEDBY RESERVEDBY NA

RESERVEEND RESERVEEND NA

RESERVEFORBUCKETID RESERVEFORBUCKETID NA

RESERVEFORID RESERVEFORID NA

RESERVEGROUP RESERVEGROUP NA

RESERVEJOBCLASS RESERVEJOBCLASS NA

RESERVEJOBPROJ RESERVEJOBPROJ NA

RESERVEOSGROUP RESERVEOSGROUP NA

RESERVESTART RESERVESTART NA

RESERVEUSER RESERVEUSER NA

RESOURCECMD RESOURCECMD NA

RESOURCES NA NA

RESOURCESEXTRA NA NA

RESOURCESPEC RESOURCESPEC NA

RUNNINGJOBS RUNNINGJOBS NA

SLOTS NA NA

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.87

nc hosts vovselect from TASKERS vovselect from HOSTS

SLOTSTOTAL SLOTSTOTAL NA

STATSREJECTCORES STATSREJECTCORES NA

STATSREJECTOTHER STATSREJECTOTHER NA

STATSREJECTRAM STATSREJECTRAM NA

STATSREJECTRESERVED STATSREJECTRESERVED NA

STATSREJECTSLOTS STATSREJECTSLOTS NA

STATSVISITS NA NA

STATUS NA NA

SWAP SWAP NA

SWAPFREE SWAPFREE NA

SWAPTOTAL SWAPTOTAL NA

TASKERGROUP TASKER NA

TASKERNAME TASKERNAME NAME

TASKERSLOTSSUSPENDABLE TASKERSLOTSSUSPENDABLE NA

TASKERSLOTSSUSPENDED TASKERSLOTSSUSPENDED NA

TASKERSLOTSUSED TASKERSLOTSUSED NA

TASKERTYPE TASKERTYPE NA

TIMELEFT TIMELEFT NA

TMP TMP NA

TYPE TYPE NA

UPTIME NA NA

UPTIMEPP UPTIMEPP NA

USER USER NA

VERSION VERSION NA

VOVVERSION VOVVERSION NA

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.88

Monitor Jobs, Taskers and Resources
The activity of Accelerator can be monitored with a dialog.

The dialog is invoked with:

% nc monitor

The following is a list of the tabs available in the dialog:

TaskersGroups The activity of tasker groups.

Taskers The activity of taskers.

Taskers HW The hardware offered by taskers.

Taskers Resources The resources offered by taskers.

Who Who is running jobs.

Running Jobs The progress of running jobs.

Running Commands The details of running commands.

Running Details The details of running jobs.

Resources The usage and availability of resources.

Queued Jobs The jobs in the job queue.

Queue Buckets The jobs in the job queue organized by groups of similar jobs (called 'buckets').

FairShare The FairShare statistics.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.89

Figure 4:

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.90

Statistical Information about Resources and Jobs
Reports provide statistical information about all the jobs that are run during a specified time and the usage of the resources that run

jobs. The resources include CPU time, licenses, memory and more.

Statistics
Statistics can be used to determine if additional resources are required, if resources could be better utilized by rescheduling jobs,

and if resources are excessive.

Job reports can be viewed on a browser interface.

host:port/cgi/jobstats.cgi generates a report on all the jobs executed in a given time interval. This report includes the

average and maximum duration of the jobs, and the average and maximum waiting time.

Figure 5:

Resource Statistics
The Resource Statistics page generates a report of all resources used in a given time interval.

The utilization of the various resources and their criticality are shown below.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.91

Figure 6:

To view the plot of the utilization of a specific resource, click the graph button that is next to the resource name in the Resource

column of the Resource Statistics page.

Figure 7:

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.92

To view the detailed report of the utilization of a specific resource, click the desired resource name in the Resource column of the

Resource Statistics page.

Figure 8:

Resource Plots
Altair Accelerator tools save information about the utilization of each resource map, which can be displayed in graphical form.

Two plots are generated for each resource: one plot shows the utilization of the resource; one plot shows the demand for the

resource.

The plot can be generated over a period of 1, 2, 4, or 24 hours. Options are available to zoom in or out of the view, and to pan the

view. You can focus on the details of the selected range of time as shown below.

To view a plot, on the browser go to the Resource Statistics page, and then press the graph button that is next to the desired

resource name in the Resource column. The Resource Statistics page is shown in Statistical Information about Resources and Jobs.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.93

Figure 9:

Resource Utilization

The first set of plots shows the availability (green background) and utilization (blue line) of a resource in an interval of today > (24

hours). The height of the blue line indicates the usage of the resources: the higher the value of the plot line, the more efficient is the

usage of the resources.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.94

Figure 10:

Queued Jobs and Unmet Demand

The second set of plots show the demand for the given resource. In this example, it starts with no jobs in the queue. After a few

minutes jobs are started. More jobs are added as previously submitted jobs are executed. about 350 jobs is added. More jobs from

the are added as submitted jobs are executed. (In this example, short jobs are submitted.)

Accelerator can relate the jobs in the queue with the utilization of a resource. When a resource is exhausted and more jobs in the

queue ask for that same resource, that indicates unmet demand. Unmet demand is represented by the red line in the plot.

When the red line tracks the dark blue line, it indicates the resource is critical: this condition limits the ability of FlowTracer to

process the queued jobs faster. When the red line is significantly below the dark blue line, it indicates that the dispatching of the

queued jobs is limited. The limitation could be caused by the insufficiency of another resource such as CPUs.

Figure 11:

Use the Plots to Plan for Future Software/Hardware Purchases

If the plotted resource represents an expensive software license, it is important to look carefully at the unmet demand curve.

If the unmet demand is low, presumably there is an excess capacity for this license and the performance of the queueing system

would be the same even if this resource was reduced. On the other hand, if the unmet demand is high, purchasing more licenses

could be a benefit.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.95

Note:  When resource utilization is low, it may indicate there is a bottleneck in the queue and that unmet demand

is actually high. For example, there may be a rush-hour of jobs that exceeds the availability of licenses, which then

limits the usage of other resources. These situations typically appear as spikes in the graph. The queuing system

manages the spikes of license demands. However, for planning purposes, it is important to analyze these spikes and

determine if there is a significant effect on project timelines as well as resource utilization.

Job Resource Plots
Information about the project jobs can be viewed through the browser on the Job Plots page.

There are two plots: one plot displays the number of jobs per project that are running; the other plot displays the number of jobs

per project that are waiting (in queue). Each project is defined by color, which is listed in the table at the bottom of the page. Other

details, including the number of jobs per project that are running and waiting, and specific details about the Running and Waiting

information are included in the table.

By default, all jobs projects are stacked: displayed together in a plot, with hourly intervals (binning). The options of information to

display:

• Report by: User, host, jobclass or project. The default setting is project.

• Type: Stacked or separated. The default setting is separated.

• Binning: None, minutely, hourly, daily, weekly, monthly. The default setting is hourly.

To configure the view, select the desired item per drop menu and then press the go button.

An example of the projects stacked is shown below:

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.96

Figure 12:

An example of the jobs separated is shown below:

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.97

Figure 13:

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.98

Environment Control
Setting the environment is critical for correct job execution. Accelerator provides two methods to control the execution

environment.

1. Use a snapshot of the environment used at submission time.

This method is the simplest and is automatically selected if the environment variable VOV_ENV is not defined. The

disadvantage of this method is that the snapshot may not be portable across platforms.

Note:  This method is not available for Windows.

2. Use a named environment, which allows the tasker to create the environment on the fly using the VOV Environment

Utilities.

This method offers several advantages: strict control on the environment, greater efficiency, less disk space utilization,

easier execution across multiple platforms. This method is used if the environment variable VOV_ENV is defined; the value

of the variable indicates the name of the environment to use.

Note:  This method is required for Windows.

Use Environment Snapshots

An environment snapshot will be created and used under the following conditions:

• The environment variable VOV_ENV is not set.

• The environment variable VOV_ENV is set to the value "" (the empty string) or the value DEFAULT.

• The environment variable VOV_ENV contains the substring SNAPSHOT.

The snapshot is represented by a file, the location of which is controlled by the environment variable NC_SNAPSHOTDIR. This

variable can take one of the following symbolic values:

Possible values of nc_snapshotdir

homedir Use directory ~/.ncsnapshots/$VOVARCH

serverdir Use directory PROJECTNAME.swd/snapshots/$USER/

$VOVARCH

any other value Use the directory $LOGDIR/snapshots/$USER/

$VOVARCH, where LOGDIR is controlled by the variable

NC_LOGDIR and has default value ./vnc_logs

The environment snapshot is a file in Bourne-Shell syntax, which contains most of the variables in the current environment. The

variables that are excluded from the snapshot include the following: HOST OSREV OSTYPE TERMCAP SHELL PWD. These

variables are defined in the file $VOVDIR/tcl/vtcl/vovenvutils.tcl

An environment snapshot may be shared by many jobs.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.99

When using a snapshot, the job is submitted with environment SNAPSHOT(name_of_snapshot_file).

Note:  This is a named environment.

To force the creation of an environment snapshot:

• Ensure sure the environment variable VOV_ENV is not defined.

• Do not use the option -e.

% unsetenv VOV_ENV
% nc run sleep 10
Resources= linux
Env      = SNAPSHOT(vnc_logs/snapshots/joe/linux/env4590.env)
Command  = vw sleep 10
Logfile  = vnc_logs/20020704/180936.7793
JobId    = 00350601
vnc: message: Scheduled jobs: 1       Total estimated time: 0s

Named Environments

The Accelerator Environment Utilities consist of two commands: vel, lists the available environments; ves switches between

environments. For more information, refer to Environment Management.

The following example lists the available environments and switch to the environment called BASE.

% vel
vel: message: Environment directories:
1 /release/VOV/latest/sun5/local/environments
1 . tcl BASE            UNIX utilities, X windows, and VOV
1 . tcl D               Define vars: Usage: ves "+D(VAR1=value1,...)"
1 . tcl DEFAULT         Just a name for whatever you already have.
% ves BASE

Select a Named Environment

1. When submitting a job, to select the environment in which to run the job, use the option -e. Examples are shown below:

% nc run -e BASE sleep 10
...output omitted...
% nc run -e BASE+SPICE sleep 10
...output omitted...
% nc run -e "BASE+D(MYVAR=somevalue)" sleep 10
...output omitted...

Use Snapshot with Named Environment

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.100

1. A combination of an environment snapshot and a name environment can be set up. Try the following example shows using

the -e option to set up a combined environment with a SNAPSHOT plus a name environment CALIBRE:

% nc run -e SNAPSHOT+CALIBRE sleep 10
...output omitted...
% nc run -e SNAPSHOT+MODULE1+CALIBRE sleep 10
...output omitted...

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.101

Job Resources
Some jobs may require a specific platform or operating system (OS) to run. As Accelerator automatically lists platform/OS as

a tasker resources, the task of finding the right host to execute a job is easy: specify the required platform/OS as part of the job

resource requirements.

Cross-platform Job Runs
When submitting a job cross-platform, explicitly specify the environment for the job.

For example, the following command automatically sends the specified job to a Linux machine that uses the environment

'VERILOG'.

% nc run -e VERILOG -r linux -- verilog mydesign.v

Accelerator and ClearCase: nc run -clearcase
To submit a job in a ClearCase view, use the option -clearcase with nc run.

CLEARCASE_ROOT must be set. Otherwise, the option -clearcase has no effect.

% nc run -clearcase sleep 10

ClearCase presents two challenges for Accelerator when the taskers in the remote machines are not running in any special view:

• The working directory of the job, which could be within the /vobtree, is likely to not exist on the tasker machine. For

the directory to exist, the view must first be initialized. In this scenario, nc run -clearcase submits all jobs from the

HOME directory of the user. The actual working directory of the job is stored in the VOV Properties VOVDIR attached to

the job. The view name is stored in the property VIEW, also attached to the job.

• The command needs to be executed in the view context, which is normally done with the following command:

cleartool setview -exec "COMMAND" VIEWNAME

As COMMAND can be complex, it is best to wrap it into an auxiliary script. nc run -clearcase is used as a wrapper for

the command vw ccexec. The utility ccexec is executed on the remote tasker and performs the following steps:

# Gets the view name from the property VIEW attached to the job

# Gets the working directory of the job from the VOV Properties VOVDIR

# Creates a temporary script in /usr/tmp to change directory and execute the command

# Calls clearcase setview -exec ... VIEWNAME

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.102

Request a License Before Executing Jobs
Occasionally, a script can include a job that requires a license. Normally, such jobs are submitted to the queue.

However, instead of submitting the job to the queue, it can be checked if a license if available,and then execute the job on the local

host. This can be automated by wrapping the command with vovresreq.

Use vovresreq with Accelerator

The vovresreq command works by waiting until the resource License:hspice is available before executing the remainder

of the command line. In this example: the remainder of the command line is the SPICE run. If the license is not immediately

available, vovresreq waits for the license before running the job.

Instead of calling spice directly, call it as follows:

% nc cmd vovresreq License:spice spice netlist.spi

vovresreq

This utility creates a job for tool vovresgrab.

vovresreq: Usage Message

DESCRIPTION:
      This utility is normally used within scripts.

      Execute a command after grabbing a list of
      resources (typically licenses) required to run the command.
      The utility waits until all requested resources have
      been made available.
      The command also reads the VNCSWD/vovresreq/config.tcl file.
      This file contains the optional line:
          set RESREQ(jobclass)   <jobclassName>
          set RESREQ(taskergroup) <taskergroupName>
          set RESREQ(taskernames) <commaSeparatedListOfTaskerNames>
      Currently the jobclass can be used but the resources it specifies are
      not currently used. But it is added here for a future release.
      The taskergroup and taskersnames are used in the resources of the
      vovresreq jobs. taskergroup if defined supercedes taskernames.
      The jobclass name is the name of a jobclass to use for the
      resource check out. This jobclass usually specifies a tasker
      group to use that minimizes the number of job slots used. The
      taskers in this taskergroup are usually virtual taskers where the
      number of slots on the tasker is much larger than the number of
      cores. The vovresreq jobs are very minimal jobs and do not use
      a lot of cpu time and very little memory (much less than 20 meg).
      This job class should be sure to specify resources of
          PERCENT/0 RAM/20
      so the server can accomodate a large number of jobs. It is up
      to the job class creator to determine the actual value of the resources.

      This utility creates a job for tool vovresgrab.

    USAGE IN SCRIPTS: optional arguments are in []

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.103

      Old style vovresreq command
          vovresreq [-v] RESOURCE_LIST [CMD]
      in the above case the -v switch if defined must preceed the
      RESOURCE_LIST and CMD
      This is exactly like submitting
          vovresreq [-v] -checkout RESOURCE_LIST -exec CMD
      Both of these ways of using vovresreq are for single checkouts
      and the checkout is done whne the CMD is completed.

      These ways of using vovresreq allow multiple checkouts and
      check ins with the resid switch.
          vovresreq [-v] -checkout RESOURCE_LIST [-resid N] [-exec CMD]
          vovresreq [-v] -checkin  RESOURCE_LIST [-resid N]

USAGE WITH NetworkComputer:
     % nc cmd vovresreq RESOURCE_LIST CMD ...

OPTIONS:
       -h                   -- display this usage message
       -v                   -- Increase verbosity.
       -checkout            -- Wait for license to be checked out, then
                               return, else wait until the command completes.
       -checkin             -- Return the resources previously checked out.
       -exec                -- Execute command (this is the default)
       -resid               -- Define the resource Id so they can be
                               checked in the order the user wants.
       -sametasker          -- Make sure the vovresgrab runs on the same
                               tasker as the job currently executing 
                               vovresreq. This is valuable for correct 
                               matching of handles and jobs. However this can
                               be slow if the tasker is highly loaded.

EXAMPLES:

     Example 1:
        -- ...script fragment...
        vovresreq -v "License:calibre" calibre cell.drc

     Example 2:
        -- ...script fragment for a single checkout and check in...
        vovresreq -checkout "License:calibre" -resid 1
        calibre cell.drc
        vovresreq -checkin  "License:calibre" -resid 1

     Example 3:
         -- ...script fragment with multiple checkouts and check ins...
         vovresreq [-v] -checkout RESOURCE_LIST1 [-resid 1]
         calibre cell.drc
         vovresreq [-v] -checkout RESOURCE_LIST2 [-resid 2]
         calibre cell.erc
         vovresreq [-v] -checkin   RESOURCE_LIST2 [-resid 2]
         vovresreq [-v] -checkout  RESOURCE_LIST3 [-resid 3]
         calibre cell.lvs
         vovresreq [-v] -checkin   RESOURCE_LIST3 [-resid 3]
         vovresreq [-v] -checkin   RESOURCE_LIST1 [-resid 1]

    Example 4:
         -- Execute the command on the local machine but only after
         -- grabbing a License:calibre resource.
         % nc cmd vovresreq "License:calibre" -resid 1 calibre cell.drc
         % nc cmd vovresreq "License:drc License:hdrc" -resid 2
                            calib bigcell.drc

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.104

vovresgrab

vovresgrab is used in conjunction with vovresreq to request resources on the fly. This utility is not meant to be invoked by

the user, but only by vovresreq.

vovresgrab: Usage Message
  
      DESCRIPTION:
             vovresgrab is used in conjuction with vovresreq
             to request resources on the fly.
             This utility is not meant to be invoked by the
             user, but only by vovresreq.
      USAGE:
         % vovresgrab <RESLIST> <JOBID> <HOST> <PORT> <RESID>
  

NUMA Control and CPU Affinity
Non-Uniform Memory Access (NUMA) is to be used with machines that have multiple physical CPUs.

The performance of accessing RAM from a CPU depends on whether the RAM is physically attached to the same CPU or to

another CPU. Therefore, application performance can be enhanced by constraining the application to stay within a single physical

CPU. A Linux command, numactl, supports this control. For more information, use man numactl.

Accelerator can also automatically set the CPU affinity of an application in order to maximize its execution performance. The

vovtasker automatically computes the socket, core, and memory layout of the machine on which it is executing. For each job that

requests NUMA control, both the CORES and RAM resources for the job are used to determine where in the layout the job should

be placed, depending on the placement type requested.

Note:

• If a job with NUMA control requested is executed on a machine with a single socket, NUMA will be

ineffective, but no problems will occur.

• NUMA is supported only on Linux machines.

Placement Types

This version allows two different placement types for NUMA jobs: pack and spread. In both cases, the affinity of each single job is

constrained to one or more physical sockets and have the following differences in behavior:

• Pack: the placement selects CPUs in a way that minimizes the number of unused cores in each CPU.

• Spread: the placement selects CPUs in a way that minimizes the loading of each CPU.

Examples of Job Submission with NUMA

% nc run -r CORES/2 -jpp pack -- my_job
% nc run -r CORES/4 -jpp spread -- my_job

To monitor the effect of CPU affinity, check the job property named "NUMA_AFFINITY":

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.105

For example:

% nc list -O "@ID@ @PROP.NUMA_AFFINITY@ @STATUSNC@"
283569646 NUMA pack:    0   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *
  Running
283569650 NUMA pack:    *   1   2   *   *   *   *   *   *   *   *   *   *   *   *   *
  Running
283569654 NUMA pack:    *   *   *   *   4   5   6   7   *   *   *   *  12  13   *   *
  Running
283569658 NUMA spread:  *   *   *   *   *   *   *   *   *   *   *   *   *   *  14   *
  Running
283569662 NUMA spread:  *   *   *   *   *   *   *   *   *   *   *   *   *   *   *  15
  Running
283569665 NUMA spread:  *   *   *   3   *   *   *   *   *   *   *   *   *   *   *   *
  Running

Check Tasker NUMA Status

Each tasker sets and maintains a property on itself named "NUMA_LAYOUT". The property is updated each time a job with a

NUMA request begins or ends. To check the current NUMA status for a tasker named "foo":

% nc cmd vovselect prop.NUMA_LAYOUT from taskers where name==foo
Original:           Used/Total    _________+__
Socket:  0   RAM=    512/32089    ****oooooooo
Socket:  1   RAM=   1024/32089    ********oooo

CGROUPS for Jobs
A cgroup is a control group, used as a system for resource management on Linux.

A cgroup can be used to limit, throttle and account for resource usage per control group. Each resource interface is provided by a

controller. Support for cgroup v2 is now enabled. For example, cgroups can be used to isolate core workloads from background

resource needs. It prevents one workload from overpowering other workloads. On Linux taskers, a job can be requested to run in

one or more cgroups.

cgroup v2

Below is a list of the fundamental differences between cgroup V1 and cgroup v2:

• Unified hierarchy - resources apply to cgroups now

• Granularity at TGID (PID), not TID level

• Focus on simplicity/clarity over ultimate flexibility

Other improvements are shown in the table below.

Description v1 v2

Tracking on non-immediate/multi-source

charges

No tracking of non-immediate charges

Charged to root cgroup, essentially

unlimited

Page cache writebacks and network are

charged to the responsible cgroup

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.106

Description v1 v2

Can be considered as part of cgroup

limits

Communication with backing subsystems Most actions for non-share based

resources reacted crudely to hitting

thresholds

For example, in the memory cgroup, the

only option was to OOM kill or freeze

Many cgroup controllers negotiate with

subsystems before real problems occur

Subsystems can take remediative action

(eg. direct reclaim withmemory.high)

Easier to deal with temporary spikes in a

resource's usage

Saner notifications One clone() per event for cgroup

release, expensive

eventfd() support for others

inotify support everywhere

eventfd() support still exists

One process to monitor everything, if you

like

Utility controllers make sense now Utility controllers have their own

hierarchies

We usually want to use processes from

another hierarchy

As such, we end up manually

synchronising

We have a single unified hierarchy, so no

sync needed

Consistency between controllers Inconsistencies in controller APIs

Some controllers don't inherit values

Better consistency between controllers

Unified limits Some limitations could not be fixed due

to backwards compatibility

memory.

{,kmem.,kmem.tcp.,memsw.,

[...]}limit_in_bytes

Less iterative, more designed up front

We now have universal thresholds (eg

.memory.{high,max})

Syntax

The syntax is similar to requesting any other resource, with the resource name consisting of the prefix CGROUP: followed by the

path to the cgroup on the filesystem relative to the root of the cgroup hierarchy.

In the following example, "sleep 120" job is assigned to the cgroup /cpuset/my_cgroup1 and /memory/my_cgroup2:

nc run -r CGROUP:/cpuset/my_cgroup1 -r CGROUP:/memory/my_cgroup2 -- sleep 120 

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.107

Note:  The groups must exist and be constrained by the cgroup set up on the taskers. If that condition is not met, the

job will not launch on the tasker because the resource must exist.

If multiple conflicting cgroups are assigned, such as two cgroups under the /memory hierarchy, the cgroup that is specified last is

the cgroup that is assigned to the process.

The special resource CGROUP:RAM can be used to limit the memory usage of a job within a cgroup. In the following example,

the job is assigned to a default cgroup that is limited to 2000 megabytes of RAM. As only one job is placed in each default cgroup,

the RAM usage can be limited on a per job. The path to this default cgroup is:

<path to cgroup root directory>/memory/<queue name>_<tasker name>_<job slot number>

For example:

nc run -r CGROUP:RAM -r RAM/2000 -- sleep 120 

There is a special case with RAM: specifying CGROUP:RAM and RAM/200 would result in a job being placed in /cgroup/

memory/vncCG_buffalo_3 and /cgroup/memory/vncCG_buffalo_3/memory.limit_in_bytes being set to

209715200.

Note:  CGROUP:RAM cannot be used with a non-default cgroup. If both CGROUP:RAM and a non-default cgroup

are specified, the job will be placed in the specified cgroup without changing that cgroup's RAM usage limit. We

strongly recommend specifying a RAM resource when using CGROUP:RAM, as the default value is low (20

megabytes).

To see tasker resource for cgroups use, nc hosts -r and look for CGROUP: entries. If they are not present, ensure that they are

set up on the taskers with LSCGROUPS and check the tasker logs for errors.

Enable cgroups

Many Centos, SLES or Ubuntu systems do not install with cgroups available by default. However, Use the steps below to

configure Linux for cgroups.

On Centos 6, enable cgroup by installing the libcgroup RPM, and then enabling cgroup with the following:

% sudo service cgconfig start
% sudo chkconfig cgconfig on

Use Containers for Jobs
Linux containers can be leveraged to constrain the amount of system resources used by jobs.

Containers are enabled by the administrator through named configurations that can be requested as a job resource. Each named

configuration will contain a recipe of hooks to call to setup the container, and limits to enact upon them.

As a basic example:

% nc run -r Container:c1 -- sleep 120

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.108

The above job submission example will request that the tasker follow the recipe defined in the named configuration file for c1, to

create the container described in the configuration and place the job into it.

The named container configuration may be defined to impose resource limits for the container being created. Some limits can be

defined by the user through the use of resource requests in the job submission. There are three such requests that are considered

during the processing of the named container configuration: CORES, RAM, and TMP.

CORES limit example:

% nc run -r Container:c1 CORES/2 -- sleep 120

RAM limit example:

% nc run -r Container:c1 RAM/20000 -- sleep 120

TMP limit example:

% nc run -r Container:c1 TMP#50000 -- sleep 120

RAM and TMP resources are specified in megabytes. Note that RAM is consumable, as indicated by the use of the / in the request.

TMP, however, is not consumable, and such requests should use #. If a / is used with TMP, the amount of the TMP resource

offered by the tasker will not be adjusted.

Match Jobs to Handles
Altair Accelerator tools work to match each license handle to the jobs currently running.

Typically, licenses are from FlexNet Publisher. This matching is based on "soft evidence"; the details of which process has

checked out which handle are not available. Matching is based on the following information:

• The name of the user (normalized to lower case)

• The name of the host (normalized to lower case, possibly stripped of the domain name)

• The checkout time compared to the start of the job, with additional uncertainty as FlexNet Publisher reports checkout times to

the minute, not to the second.

Matching is especially challenging when jobs of similar age are running on the same machine by the same user.

Despite these difficulties, the matching routines produce useful information that can be used to learn which licenses are actually

used by a job. This information is also used by the preemption module.

For information about matching, check the following fields:

lmhandlesall A list of all matched resources, consisting of one or more triplets of the form

resourcename: tokens match_type handle_id"

lmhandlesnru A list of only the not requested but used (NRU) resources

lmresources A list of all matched resources, in a older format; use lmhandlesall instead

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.109

Summary of Matching Status Values

Legend for Matching Status

This is a Sure match. There is only one handle that matches the job.

This is the Best we can do.

also This could also be a match, but not certain. The number of also matches can be

limited by setting the parameter resusermaxmatches. The default value is 6.

group This is a match if Grouped with another handle.

This is a match with an Old job: a job that completed recently.

Not-Requested/Used: Not a match. This handle matches a job that does not request

the resource.

Requested/NotUsed: Not a match. This job does not use the resource it requested.

Revoked.

Partial Revocation. This can occur when preemption steals only some of the

tokens for a feature, not all. Typically, this is considered an error.

Too early to tell. This applies to jobs that are younger than one minute.

Not a match. This appears to be a handle used outside of the queues.

For additional information about handle matching, and when disabling matching jobs could be needed, refer to Resource/Handle

Matching.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.110

Resource/Handle Matching
When a resource is derived from a license feature, it is useful to attempt a matching of the license handles that are currently

checked out and the jobs that are currently running.

This is a challenging task because the information relative to the license handles is often incomplete and incorrect. For example,

FlexNet Publisher does not report the checkout time to the second, and does not reveal the PID of the process that has requested

the checkout. The PID alone would enable a precise matching. Instead, we have to accept the best possible solution based on

approximate input data.

The matching is automatically enabled for all licenses.

Note:  When the number of running jobs for a given license exceeds about 1,000, the matching becomes onerous on

the vovserver, which can be detected by "Long Service" messages in the vovserver log.

For this issue, we recommend disabling the handle matching for selected licenses.

#
# Example of disabling matching for a couple of resources for which
# matching may be too expensive.
# This is to be done in the file  resources.tcl
#  (or vovresourced/config.tcl) 
#
vovresSetFlags License:VCSRuntime_Net -nomatch -noooq -norecent
vovresSetFlags License:NC-Verilog     -nomatch -noooq -norecent

### The default status for the resource flags can be recovered as
### follows:
#   vovresSetFlags License:abc -match -ooq -recent -log -nooverbook

Control Matching

The matching can be disabled for a resource by setting the -nomatch option in vtk_resourcemap_set for the resource.

# Example:
vtk_resourcemap_set License:abc -max 100 -lmfeature abc   -nomatch   

There are also a few global parameters (that is, the parameters set in policy.tcl) that control the matching:

resusermatchtolerance In seconds, determines a tolerance in matching checkout timestamps with jobs

starts

resusermaxmatches The number of "also" matches that we look for. .

resuserDisableMatchingThresholdA threshold for disabling matching if the sum of Monitor handles and FlowTracer

jobs exceeds it.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.111

Advanced Information

Set the Range for VovId
A VovId is a nine-digit string assigned by VOV to each object in the trace.

Example: "000012345"

The VovIds grow monotonically up to 999,999,999, after which they cycle back down to restart at about 5,000.

Change the Range used for VovIds

The range used for VovIds can be configured from the command line by using the configuration keyword idrange and specifying

both the low and the high range of the VovIds. There are rules for the relationship between the low and high values for VovId. For

example, high must be at least 1,000,000 more than low. These rules are silently enforced.

In the following example, the VovId is constrained to the range of 5 million to 100 million:

% vovsh -x 'vtk_server_config idrange 5000000-100000000'

The current range of the VovIds can be retrieved with the following command:

% vovsh -x 'vtk_generic_get policy a; parray a vovId*
a(vovIdHigh) = 100000000
a(vovIdLow)  = 5000000

VovId Changes in FlowTracer (only in versions before 2015.09)

Note:  This section does not apply for version 2015.09!

In FlowTracer (but not in Accelerator), the VovId of a job changes every time the job is executed. This happens because a new

node is created each time a job starts: a new node is assigned a new VovId. For the duration of the execution, there are two nodes

that represent the same job:

• The node with the old VovId and with status *RETRACING

• The node with the new VovId and with status *RUNNING

Upon completion of the job, the new node remains while the old node is forgotten.

The FlowTracer server remembers the relationship between the old VovId and the new VovId; if a job node is requested with the

old VovId, the server will retrieve the job with the new VovId.

VovId No Longer Changes in FlowTracer (starting from version 2015.09)

The job that is running on a tasker goes through the status RETRACING=ORANGE to RUNNING=YELLOW but does not

change the VovId. The information about which dependencies are new and which ones are old is kept in the "origin" field of the

dependencies.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.112

Node Fields
Each node in the trace has field attributes.

There are three types of fields:

1. Boolean fields, which take value in the set (0,1)

2. Integer fields, which take any 32-bit signed integer value

3. String fields, which take a null-terminated string value.

The fields are used in the Selection Rules and in Formatting Strings. The field names are not case-sensitive. For example, the rules

IsJob and isjob are equivalent.

To get an current list of all fields, use the following:

% vovshow -fields

Incompatible Fields

Some fields make sense only for one type of nodes. For example, the field NAME makes sense for files but not for jobs, while the

field COMMAND makes sense for jobs but not for files. A field is considered incompatible for a node if it does not make sense for

that node. This notion of incompatible fields is important in the construction of selection rules and formatting strings.

Fields List

Field Name Field Type Applies To Description

AGE Integer

(duration)

Nodes Age in seconds of a job or of a file.

AGEPP String Nodes Pretty-printed version of age of a job or of a file.

ANNOTATIONS Integer Nodes Number of annotations attached to the node.

AUTOKILL Integer

(duration)

Jobs Time before a job is automatically killed.

AUXRESOURCES String Jobs Additional resources assigned to a job by the server.

BUCKETID String Jobs The internal ID of the bucket object that contains the specified

job.

CHOSENTASKERID String Jobs If a job must go to a specific tasker, the ID of that tasker.

COMMAND String Jobs The command line for the job.

COMMANDLENGTH Integer (size) Jobs The length of the command line for the job.

CPUPROGRESS Integer

(percent)

Jobs The percent of CPU time used by a jobs, including all its

children, in the last sampling interval. This number can be

greater than 100 if the job is running on a multi CPU machine.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.113

Field Name Field Type Applies To Description

If CPUPROGRESS is zero, the job is stuck, probably waiting

for input or for a license.

CPUTIME Integer

(milliseconds)

Jobs The CPU time used by the job, in milliseconds, including all its

children. This is a 64-bit number.

CURRAM Integer (MB) Jobs The current amount of RAM used by the job, in MB

CURREAD Integer (bytes) Jobs The current number of input I/O events for the job, in bytes.

CURVM Integer Jobs The current amount of virtual memory used by the job, in MB

CURWRITER Integer (bytes) Jobs The current number of output I/O events for the job, in bytes.

CWD String Jobs The current working directory for the job.

DB String Files The database of a file.

DIR String Nodes Same as CWD.

DISPATCHDATE Integer

(timestamp)

Jobs The time the job has been dispatched to a tasker. This is

relevant for indirect taskers, where the DISPATCHDATE may

be significantly different from the START time due to latency

in the secondary queue.

DURATION Integer

(duration)

Jobs The duration of a job, in seconds.

DURATIONPP String Jobs The duration of a job ID in pretty format.

ENDDATE String Jobs The end date of a job in string format.

ENDED Integer

(timestamp)

Jobs The end date of a job in integer format. If the job is still

running or retracing, this field has the value 0 (see Ended2 for a

different value).

ENDED2 Integer

(timestamp)

Jobs The end date of a job in integer format. If the job is running or

retracing, this field returns the current time stamp (see ENDED

for a different value)

ENV String Jobs The environment of a job.

ENVARGS String Jobs From the environment string, all the words after the first.

EXECHOST String Jobs The execution host of the job.

EXITSTATUS Integer Jobs The exit status of a job.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.114

Field Name Field Type Applies To Description

EXPDUR Integer

(duration)

Jobs (OBSOLETE! Use XDUR instead) Expected duration of a job,

in seconds

EXPDURPP String Jobs (OBSOLETE! Use XDURPP instead) Expected duration, pretty

printed.

FAILCODE Integer Jobs A mask of values indicating why a job failed.

FLAGS String Nodes Obsolete. Not supported any longer.

FSEXCESS Integer Jobs This is essentially (FSHISTORY - FSTARGET)

+ (FSRUNNING - FSTARGET). See also

FSEXCESSRUNNING and FSEXCESSHISTORY

FSEXCESSHISTORY Integer Jobs This is essentially (FSHISTORY - FSTARGET). See also

FSEXCESS.

FSEXCESSRUNNING Integer Jobs This is essentially (FSRUNNING - FSTARGET). See also

FSEXCESS. If the number is positive, that means that the

group to which the job belongs has more running jobs than it

should.

FSEXCESSRUNNINGLOCAL Integer Jobs VovPreemptRule -rulename SOMENAME \ ... -

preempting "FSEXCESSRUNNINGLOCAL<0" \

-preemptable "FSEXCESSRUNNINGLOCAL>0

JOBCLASS==@JOBCLASS@ FSRANK9>@FSRANK9@"

\ ...

FSEXCESSRUNNINGLOCAL1Integer Jobs Similar to FSEXCESSRUNNINGLOCAL but uses the balance

of running jobs at one level above the local.

FSEXCESSRUNNINGLOCAL2Integer Jobs Similar to FSEXCESSRUNNINGLOCAL but uses the balance

of running jobs at two levels above the local.

FSEXCESSRUNNINGLOCAL3Integer Jobs Similar to FSEXCESSRUNNINGLOCAL but uses the balance

of running jobs at three levels above the local.

FSEXCESSRUNNINGLOCALCOUNTInteger Jobs This is number of jobs corresponding to

FSEXCESSRUNNINGLOCAL.

FSEXCESSRUNNINGLOCALCOUNT1Integer Jobs This is number of jobs corresponding to

FSEXCESSRUNNINGLOCAL1.

FSEXCESSRUNNINGLOCALCOUNT2Integer Jobs This is number of jobs corresponding to

FSEXCESSRUNNINGLOCAL2.

FSEXCESSRUNNINGLOCALCOUNT3Integer Jobs This is number of jobs corresponding to

FSEXCESSRUNNINGLOCAL3.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.115

Field Name Field Type Applies To Description

FSGROUP Integer Jobs The FairShare group that the job belongs to.

FSHISTORY Integer Jobs The actual share in the FairShare window for the FairShare

group, multiplied by 10,000.

FSRANK Integer Jobs The FairShare rank of the FairShare group to which the job

belongs, or -1 if the FairShare group has no rank. (See also

FSRANK9)

FSRANK9 Integer Jobs This is the same as FSRANK, except that the value returned for

groups that have no FairShare rank is 9,999,999 instead of -1.

FSRUNNING Integer Jobs The actual share of all running jobs for the FairShare group,

multiplied by 10,000.

FSRUNNINGCOUNT Integer Jobs The current number of running jobs for the FairShare group of

the job.

FSSUBGROUP String Jobs The part of the FairShare group after the colon.

FSSUSPENDEDCOUNT Integer Jobs The current number of suspended jobs for the FairShare group

of the job.

FSTARGET Integer Jobs The FairShare target for the FairShare group to which the job

belongs. The target, which is normally a fracsional number

less than 1.0, is multiplied by 10,000 to yield the FSTARGET.

For example, a group that has a target of 30%=0.3 will have a

FSTARGET of 3,000.

FSTOKENS Integer Jobs An integer multiplier for the contribution of the job to the

FairShare (e.g. a fstokens value of 2 means that the job counts

as 2 "normal" jobs)

FSUSER String Jobs The user component of a FairShare node (i.e. the component

right after the dot '.' , if it exists)

GRABBEDRESOURCES String Jobs The list of resource maps that have been grabbed in order to

dispatch a job to a tasker. This is valid only for RUNNING

and RETRACING jobs, and the value of the field may change

over time due to reconciliation of resources. See also the

GRABBEDRESOURCESO field, which is available for jobs

even after completion.

GRABBEDRESOURCESO String Jobs The original list of grabbed resources when a job was last

dispatched to a tasker. For RUNNING and RETRACING jobs

it is best to look at GRABBEDRESOURCES instead. The final

letter is an "oh" for Original.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.116

Field Name Field Type Applies To Description

GRABBEDTOOLS String Jobs Obsolete: Only for running jobs

GROUP String Jobs The FairShare group of a job. This is different from

OSGROUP, which is used to specify the group permissions for

the job.

HASANNOTATIONS Boolean NODES True if the node has annotations.

HASINPUTCONFLICT Boolean JOBS True if job failed on an input conflict.

HASINPUTS Boolean NODES True if a node has one or more inputs.

HASOUTPUTCONFLICT Boolean JOBS True if job failed on an output .conflict

HASOUTPUTS Boolean NODES True if a node has one or more outputs.

HASPROFILE Boolean JOBS True if job collects profile information like RAM and CPU

usage at runtime (see option -profile in nc run)

HASRUNINFO Boolean JOBS Obsolete: always 0.

HOST String JOBS The host that executed a job.

ID String NODES The ID of a node. This field is of type "string" and is shown

with leading zeroes (e.g. "000123456"). Contrast this with the

field IDINT which is of type "integer".

IDINT Integer NODES The integer version of the Vovid of a node. Contrast this with

the field ID which is of type "string"

INPUTS Integer NODES The number of inputs of a node.

ISAUTOFLOW Boolean JOBS The job turns VALID as soon as all its inputs are VALID, with

no execution.

ISAUTOFORGET Boolean JOBS The job is automatically forgotten after a certain time after

completion.

ISAUTOKILL Boolean JOBS The job is automatically killed if it exceeds its expected

duration.

ISBARRIER Boolean NODES True if a file has a barriers on it.

ISBARRIERINVALID Boolean NODES True if a file has a barriers would be INVALID were it not for

the presence of a barrier.

ISCHAIN Boolean FILES True if the file is part of a chain, meaning that there are tools

that operate 'in-place' on the file.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.117

Field Name Field Type Applies To Description

ISDATA Boolean NODES True if node is a file.

ISEPHEMERAL Boolean JOBS (experimental, do not use).

ISFILE Boolean NODES True if node is a file.

ISINTERACTIVE String JOBS True if the job is interactive ( -I -Ir -Il -wl )

ISJOB Boolean NODES True if node is a job.

ISMIGRATABLE Boolean JOBS This field is an annotation to identify jobs that can be migrated.

Currently not supported.

ISNODE Boolean NODES True if a node is a node (Always true)

ISNONEXEC Boolean JOBS True if a job is not executable

ISNONEXEC Boolean JOBS True if the job is non-executable.

ISOPTIONAL Boolean FILES True if an output has the OPTIONAL flag

ISPLACE Boolean NODES OBSOLETE: True if a node is a file (see ISFILE)

ISPREEMPTABLE Boolean JOBS This field is honored by the vovpreemptd daemon. If the

value is zero, then the job is not considered for preemption. For

information on how to set the preemptable flag, see Control

Whether a Job is Preemptable. See also ISMIGRATABLE.

ISPROCESS Boolean NODES Same as ISJOB.

ISQUEUED Boolean JOBS The job is ready to fire and in a bucket in the job queue.

ISREADYTOFIRE Boolean JOBS All inputs of a job are VALID and the job is ready to fire.

ISSCHEDULED Boolean NODES True if node is scheduled to be retraced.

ISSCHEDULEDBARRIERINVALIDBoolean NODES True if node is scheduled and had the barrier invalid flag set.

ISSHARED Boolean FILES True if file is shared output.

ISSKIP Boolean JOBS True if the job is skipped (also called ISAUTOFLOW).

ISSTDERR Boolean FILES True if file is a stderr file.

ISSTDOUT Boolean FILES True if file is a stdout file.

ISSUBJOB Boolean JOBS True if the job is a subjob (e.g. partialtool, vovjobresumer).

ISSUSPENDED Boolean JOBS True if the job or one of its children is suspended.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.118

Field Name Field Type Applies To Description

ISSYSTEMJOB Boolean JOBS True if the job is a 'system job' like vovzip, or vovsh -s netinfo.

ISTOOL Boolean NODES Same as ISJOB and ISPROCESS.

ISTRANSFER Boolean JOBS True if the job is being transfered to another cluster.

ISTRANSITION Boolean NODES True if node is job (see ISJOB)

ISTRIGGERRUN Boolean FILES True if the file has the trigger,run flag, i.e. if a change in the file

triggers a retrace of the downcone

ISTRIGGERSTOP Boolean FILES True if the file has the trigger,stop flag, i.e. if a change in the

file triggers a stop of the downcone, followed by a retrace of the

downcone

ISUNSAFE Boolean JOBS True if node is "unsafe"

ISZIPPABLE Boolean PLACES True if the file can be automatically zipped.

ISZIPPED Boolean PLACES True if the file is currently zipped.

IUO String NODES One of the following characters: "." "i" "u" "o"

JOBCLASS String JOBS The jobclass of a job

JOBID String JOBS The ID (number) of a job (a field of PROCESSES). An integer

but often with leading 0s.

JOBLOGDIR String JOBS The directory to which the logfile of a job is written (if a logfile

is specified on the command line). If no logfile is specified, this

is the current directory of the job.

JOBNAME String JOBS The job name of a job

JOBPROJ String JOBS Name of the project that the job belongs to (same as project).

JPP String JOBS Job placement policy.

LABEL String NODES A short label for the node.

LASTCPUPROGRESS Integer

(timestamp)

JOBS The last time the system detected some cpu progress in the job.

LASTCPUPROGRESSPP String JOBS The pretty-print version of "$NOW-LASTCPUPROGRESS".

LEGALEXIT String JOBS The legal exit allowed for a job to be considered VALID (same

as OKSTATUS).

LEVEL Integer NODES The level of a node.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.119

Field Name Field Type Applies To Description

LMHANDLESALL String JOBS A detailed list of all handles that have been matched to this

job. For each handle, the field shows: ResourceName#Tokens

MatchType FLEXlmHandle License:a#1 best 22334

License:b#2 sure 12345

LMHANDLESNRU String JOBS A detailed list of all the NRU (Not Requested / Used) handles

that have been matched to this job. For each handle, the field

shows: ResourceName#Tokens MatchType FLEXlmHandle

License:a#1 nru 22334 License:b#2 nru

12345

LMRESOURCES String JOBS These are the license resources (typically derived from

FLEXlm features) that appear to be used by a job even if the

job does not explicitly declare them. This field is used by

vovlmremove to decide which features to remove. The field

is updated based on the matching of free FLEXlm handles and

running jobs. The field consists of an even number of words,

with each pair consisting of a resource name and a boolean

flag indicating if the resource is a "false-out-of-queue", i.e.

the handle is not-requested but used. A handle is Example:

License:a#2 0 License:b#1 1 This means that

the job requested 2 tokens of License:a and is in fact using

them. In addition, the job is using 1 token of License:b even

if it does not request it. See also LM_HANDLES_ALL and

LM_HANDLES_NRU.

LX String JOBS Legal Exit Value for a job (Same as legalexit and ok_status).

MAXRAM Integer (MB) JOBS The max RAM used by a job and its children, in MB.

MAXSWAP Integer JOBS Maximum amount of swap used by the job, in MB.

MAXVM Integer (MB) JOBS Maximum amount of virtual memory used by the job, in MB.

NAME String FILES The name of a file.

NAMEX String FILES The name of a file, fully expanded. The expansion is done on

the server side.

NODETIMESTAMP Integer

(timestamp)

NODES The time the node last changed status (i.e. changes color).

NODETYPE String NODES "FILE" if node is a file, "TOOL" if node is a job (I know,

TOOL should be JOB)

NUMA String JOBS Requested NUMA placement for the job.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.120

Field Name Field Type Applies To Description

OKSTATUS String JOBS The list of acceptable exit status (same as LEGALEXIT).

OSGROUP String JOBS The operating system group for the job (different from

GROUP, which is used in the FairShare scheduling).

OUTPUTS Integer NODES The number of outputs of a node.

PID Integer JOBS The process id of a job.

PRIORITY Integer JOBS Prioity of the job, in the range 0 to 15.

PRIORITYPP String JOBS Pretty printed version of the priority of the job.

PROJECT String JOBS Name of the project that the job belongs to (same as jobproj)

PROP.<propname> String NODES This field is used to access the property with name propname.

For example, to access the property "ABC", one should ask for

"PROP.ABC". See also field PROPERTIES.

PROPERTIES String NODES The list of properties attached to a node. The list consists of an

even number of words, where the first word is either 'S' (for

STRING) or 'I' for INTEGER properties and the second word is

the name of the property. See also the 'PROP.*' field

QUEUETIME Integer

(timestamp)

JOBS Time the job was put onto the job queue, more specifically the

last time the job was scheduled. The job could in fact enter

the job queue later due to dependency constraints or to lack of

space in queue.

QUEUEWAIT Integer

(duration)

JOBS The time a job has waited in the queue, in seconds.

QUEUEWAITPP String JOBS Pretty-print version of QUEUEWAIT.

RANDOM Integer ALL A random number in the range [0-9999]. Used, for example, to

sort jobs in preemption rules.

REQCORES Integer JOBS Requested CORES for the job. This is set when the job

is dispatched to a tasker. Another name for this field is

REQCPUS. See also explanation on REQRAM.

REQPERCENT Integer JOBS Requested PERCENT for the job. See also explanation on

REQRAM.

REQRAM Integer (MB) JOBS RAM requested by a job. This value may come from 1) the

SOLUTION property on the job, if it exists, 2) from the

requested resource on the bucket, if the job is queued, or 2)

from the resources string of the job. Normally, the value is the

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.121

Field Name Field Type Applies To Description

same regardless of the origin, but it is possible and acceptable

that the value may change due to additional math performed

during scheduling. Normal case: a job requests "RAM/200".

Then the REQRAM value is going to be 200. Strange case: a

job requests "RAM/200 SLOTS/2 RAM/300" (i.e. the RAM

request is repeated). In this case, REQRAM will be 200 for

the job if it is not Queued or if the SOLUTION property is

removed after the execution of the job. Else it will be 500

(=200+300) while the job is Queued.

REQSLOTS Integer JOBS Requested number of slots for the job. See also explanation on

REQRAM.

REQSWAP Integer (MB) JOBS Requested swap for the job. See also explanation on REQRAM.

RESERVEDRESOURCES String JOBS DO NOT USE: Only for running jobs

RESERVEDTOOLS String JOBS DO NOT USE: Only for running jobs

RESOURCES String JOBS The resources of a job.

RETRACINGID String JOBS The id of the retracing job (to find the other job is a

RUNNING/RETRACING pair).

RUNSTATUS String JOBS A representation of how well the job is running. Typical values

are Good, Paging, NoCpu. Check Job Runtime - Monitor and

Profile for more information.

SCHEDTIME Integer

(timestamp)

JOBS The earliest time that this job can be scheduled (set with -at or -

after option in nc run).

TASKERGROUP String JOBS The tasker group of the tasker to which the job has been

dispatched.

TASKERID String JOBS The id of the tasker to which the job has been dispatched.

TASKERNAME String JOBS The tasker name to which the job has been dispatched.

TASKERSLOTSSUSPENDABLEInteger JOBS Number of suspendable jobs on the tasker on which the job is

running.

TASKERSLOTSSUSPENDED Integer JOBS Number of slots suspended on the tasker on which the job is

running.

TASKERSLOTSUSED Integer JOBS Number of slots used on the tasker on which the job is running.

STARTDATE String JOBS Like STARTED, only in nice formatted ASCII

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.122

Field Name Field Type Applies To Description

STARTED Integer

(timestamp)

JOBS The time the job was started, or -1 if the job never ran.

STATUS String NODES The status of the node.

STATUSCOLOR String NODES The color associated to the node

STATUSCONSTRAST String NODES A color that contrasts with STATUSCOLOR. Used mostly in

templates for the browser interface.

STATUSIO String NODES Short version of STATUS. For example, instead of VALID you

get 'V' (the name is not very good)

STATUSMASK Integer NODES (HARD TO USE) a binary mask with a bit set for each value of

node status.

STATUSNC String NODES job status for Accelerator.

STOLENRESOURCES String JOBS These are the resources that have been taken away (revoked)

from the job, typically because the job has been preempted.

SUBJOBIDS String JOBS The ids of all subjobs of a job (used for example with

distributed parallel jobs).

SUBMITHOST String JOBS The submission host

SUBRESOURCES String JOBS Subordinate resources for a job, i.e. the resources after the first

'--' token. Used by indirect taskers.

SUSPENDEDINTERVALS String JOBS The list of all intervals in which the job has been suspended.

SUSPENDEDTIME Integer

(duration)

JOBS The total amount of time the job has been suspended (in

seconds).

SUSPENSION Integer

(duration)

JOBS The same as suspendtime.

TAIL String FILES The name of the file not incluing the directory path.

TIMESTAMP Integer

(timestamp)

FILES The time the file was last modified.

TIMESTAMPPP String FILES Pretty-printed version of TIMESTAMP.

TOOL String JOBS The name of the first tool used by the job.

TOPJOBID String JOBS The id of the top job in a distributed parallel job.

USER String JOBS The user (or owner) of a job.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.123

Field Name Field Type Applies To Description

USERXDUR Integer

(duration)

JOBS The expected duration of a job as specified by the user. If

negative, the expected duration has not been specified.

USERXDURPP String JOBS The expected duration as specified by the user, pretty printed.

USESESSIONID Boolean JOBS True if the vovtasker is supposed to look at the session id to

find the processes related to this job (in addition to the parent-

child relationship).

WAITREASON JOBS A description of why this job is waiting.

X Integer NODES The X coordinate of a node.

XDUR Integer

(duration)

JOBS The current expected duration of a job. It may be set by the user

or calculated from the most recent successful completion of the

job. If negative, the expected duration is not known.

XDURPP String JOBS The current expected duration of a job, pretty printed.

XPRIORITY Integer JOBS The execution priority of a job (range 0 to 15)

XPRIORITYPP String JOBS Pretty-printed version of XPRIORITY.

Y Integer NODES The Y coordinate of a node (same as LEVEL).

YOUNG Boolean FILES This field is 1 if the file is younger than any of the jobs that

need it. Young nodes are shown with a lighter shade of green in

the GUI.

Z Integer NODES The Z coordinate of a node (always 0).

ZIPPED String FILES The string 'ZIP' if the file is zipped, or the empty string.

Formatting Strings
A formatting string is a string that contains field references; it is used to list the elements of a set.

A field reference consists of the name of a field, which can include an optional size specification (integer value).

• The syntax for a field reference: @field@ or @field:size@.

• The size can be used to format tables and reports.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.124

Field Reference

@STATUS@ is a reference for the Status field. The name of the field in formatting strings is case insensitive and can contain

underscores. The commands in the following example yield the same result:

% vovset show -O "@id@ @status@" System:jobs
% vovset show -O "@ID@ @STATUS@" System:jobs
% vovset show -O "@Id@ @S_t_A_t_U_s_@" System:jobs

Size Specification

The size specification consists of a colon and an integer and is used to format tables and reports.

• If the field value is shorter than the specified size, the value is padded to the right with spaces in order to reach the desired

size.

• If the size is negative, the width of the formatted field is the absolute value of the size and the field is right-justified.

• If the size is positive, the field is left-justified.

• If the size is zero, the field is not truncated.

• If the field value is shorter than the specified size, the value is padded to the right with spaces in order to reach the desired

size.

• If the size is negative, the width of the formatted field is the absolute value of the size and the field is right-justified.

• If the size is positive, the field is left-justified.

• If the size is zero, the field is not truncated.

• If the absolute value of the size cannot exceed 1000.

• If the absolute value of the size cannot exceed 1000.

• Any character between the size specification and the second @ sign is silently dropped.

Each field reference is replaced by the corresponding value of the field for each node. If the field is incompatible for a node (for

example, if a job node does not have a NAME field) the reference is replaced with the empty string.

For example:

% vovset show -O "id=@ID@ (@STATUS@)" System:jobs
id=001234567 (VALID)
% vovset show -O "id=@ID@ (@STATUS:12@)" System:jobs
id=001234567 (VALID       )
% vovset show -O "id=@ID@ (@STATUS:-12@)" System:jobs
id=001234567 (       VALID)
% vovset show -O "id=@ID@ (@STATUS:-12extra_chars_that_are_dropped@)" System:jobs
id=001234567 (       VALID)

Time Specifications
Some VOV procedures and commands accept as input a time specification, which is a string that contains a mixture of digits and

the letters s m h d w.

The letters are defined as follows:

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.125

Specification Explanation

a Seconds (default)

m Minutes

h Hours

d Days (24 hours)

w Weeks (168=7*24 hours)

The time specifications are case insensitive. The d and w specifications ignore that with daylight-saving some days may be 23

hours and other days may be 25 hours.

Examples of TimeSpecs

Specification Explanation

60 60 seconds

2M 2 minutes, i.e. 120 seconds

3h30m 3 hours and 30 minutes, i.e. 12600 seconds

You can convert a time specification to seconds with the Tcl procedure VovParseTimeSpec. Conversely, you can convert an

integer to a time specification, but with some loss of precision, with the procedure vtk_time_pp.

Some utilities (such as ftlm_batch_report) require a time interval specification. Time intervals can be expressed as follows:

• past hour

• today

• yesterday

• this week

• last week

• past week

• this month

• this month full

• last month

• past month

• past 30days

• this quarter

• last quarter

• this year

• last year

• YYYY, such as 2016, would be the entire year of 2016

• YYYYMM, such as 201016, which would be the month of December in 2016

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.126

• YYYYMMDD, such as 20100116, which would be Jan 15 2016

• YYYYwWW, such as 2017w4, which would be week 4 in year 2017

• Month YYYY. Example: Sep 2017

• start-finish, where on each side of the '-' is a timestamp specification that is parsed by VovScanClock. Example:

20090101-20090301

The conversion to a start-end pair is performed by the Tcl procedure VovDate::computeSymbolicInterval

Selection Rules
Selection rules are used to create sets and to perform queries.

A selection rule consists of a list of predicates, separated by either spaces or logical operators. A non-quoted, non-escaped

space between predicates is equivalent to an AND operator. Parentheses may be used to group logical operations or manipulate

precedence. Each predicate typically consists of three parts:

1. The name of the field, which is required. The name of the field is case-insensitive and may contain extra underscores. For

example, ISJOB, IsJob and is_job are all legal names for the field ISJOB.

2. An operator on the field. Refer to the list of operators.

3. A value. This part is interpreted as an integer for boolean and integer fields, or as a string for string fields. The value may

contain spaces or other special characters if it is enclosed in double quotes (see Examples of Selection Rules, below).

Spaces in a value may also be entered if they are preceded by a backslash ("\") character. Operator and value can be omitted,

in which case they default to !=0 for numeric fields and !="" for string fields.

A special case is also supported where the name of a field can be passed by itself. This will query for objects that contain the field,

and where the field's value is non-zero (for numeric fields) or non-empty (for string fields).

Supported logical operations are AND, OR and NOT. In the absence of parentheses, AND operations will always take precedence

over OR operations at the same level. For example, the expression:

idint<5000 | idint>10000 & isjob

is evaluated as:

idint<5000 | (idint>10000 & isjob)

which may not be what was intended. To make sure the isjob predicate applies to the entire rule, use parentheses to group the

predicates explicitly:

(idint<5000 | idint>10000) & isjob

When selecting multiple values from a single field, comma-separated lists of values are supported. For example to select all

INVALID and FAILED jobs, the selection rule can be written as:

isjob & status==FAILED,INVALID

This rule is equivalent to:

isjob & (status==FAILED | status==INVALID)

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.127

Note:  Commas used in regular expressions, that is, with the ~, ^ or : operators, will be interpreted as separators in

a list of regular expressions. For example, the rule isjob status~A,B will match any job with "A" or "B" in

its status field and does NOT attempt to match the string "A,B". If you wish to use a comma in a regular expression,

enclose the expression in quotes. In this example you would use isjob status~"A,B".

Selection rules that accept integer values will also accept timespecs; for example "isjob autokill>10m" would select all jobs

with an autokill set to greater than 10 minutes.

Examples of Selection Rules

Selection Rule Explanation

isjob==1 Select all jobs

isjob Select all jobs (equivalent to "isjob!=0")

!isjob Select everything except jobs (equivalent to "isjob!=0")

not isjob Select everything except jobs (equivalent to "isjob!=0")

IS_FILE and db!=FILE Select all files which are not in the database FILE

status==RUNNING Select all nodes whose status is RUNNING

status==RUNNING,VALID Select all nodes whose status is RUNNING or VALID

status!=RUNNING,VALID Select all nodes whose status is neither RUNNING nor VALID

status!=RUNNING and status!=VALID Select all nodes whose status is neither RUNNING nor VALID

isjob status==INVALID Select all invalid jobs

isjob duration>300 Select all jobs that have lasted more than 5 minutes (i.e. 300

seconds).

isjob command~~aa Select all jobs with a command line containing the string aa;

the ~~ operator is used for case insensitive match.

isjob age<600 Select all jobs completed less than 10 minutes ago.

isjob & age<600 Select all jobs completed less than 10 minutes ago.

isjob AND age<600 Select all jobs completed less than 10 minutes ago.

isfile name~ccc Select all files with name containing ccc.

isjob inputs<2 status==INVALID Select all jobs that have fewer than 2 inputs and are invalid.

isjob AND (inputs<2 OR status==INVALID) Select all jobs that have fewer than 2 inputs or are invalid.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.128

Selection Rule Explanation

isjob (inputs<2 | status==INVALID) Select all jobs that have fewer than 2 inputs or are invalid.

isjob inputs<2 | status==INVALID Select all jobs that have fewer than 2 inputs, and all nodes

(including non-jobs) that are invalid. See notes on AND/OR

precedence, above.

isfile status==VALID age>=600 name~xxx Select all valid files older than 10 minutes whose name contains

the string xxx.

isfile status==VALID age>=10m name~xxx Select all valid files older than 10 minutes whose name contains

the string xxx.

isjob tool==gcc resources~diskio

duration>10

Select all jobs that use the tool gcc and require the resource

diskio and take more than 10 seconds.

isjob status~A,D Select all jobs that have either "A" or "D" in their Status fields;

see notes on commas in regular expressions, above.

isjob & status~"A,D" Select all jobs that have the string "A,D" in their Status fields.

isjob & status~[A-Z]+A[A-Z]+D Select all jobs that match the regular expression "[A-Z]+A[A-

Z]+D" in their Status fields (e.g. FAILED, INVALID).

isjob status::inv* Select all jobs whose status fields start with "inv" (case-

insensitive).

isjob and status:inv* Select all jobs whose status fields start with "inv" (case-

sensitive).

isjob status!::inv* Select all jobs whose status fields do not start with "inv" (case-

insensitive).

isjob AND command!^"sleep 60" Select all jobs whose commands do not contain the string "sleep

60" (case-sensitive). Note that spaces are allowed in quoted

values.

isjob AND command!^^sleep\ 60 Select all jobs whose commands do not contain the string "sleep

60" (case-insensitive). Note that spaces are allowed if preceded

by a backslash ("\").

Selection Rules and Incompatible Fields

A predicate based on an incompatible field is always true. Thus, the effect of the rule isjob name~xxx is to select all jobs

in the trace, because the predicate isjob is true for jobs and false for files, while the predicate name~xxx is true for all jobs

because the field "NAME" is incompatible for jobs.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.129

Note:  The flag for skip is actually named autoflow.

For example:

# Look for skipped jobs
isjob ISAUTOFLOW==1

Migrate from LSF
If you are a user of LSF™ moving to Accelerator, you need to be aware of some terminology shift.

For example, in Accelerator terminology, the word 'queue' has a different meaning from the one used by other batch systems. For

Accelerator, a queue is a group of compute hosts managed by a single Altair Accelerator vovserver program. The name of the

queue should start with the letters 'vnc'.

The following table summarizes the differences in terminology between LSF and Accelerator.

Table 2: Comparison of Main Concepts

LSF Accelerator

LSF master vovserver

LSF (compute) server vovtasker

LSF cluster VOV queue or VOV project

LSF queue VOV jobclass

Table 3: Comparison of Main Commands

LSF Accelerator

bsub nc run

bjobs nc list, nc monitor, nc gui

bstop nc stop

lshosts nc hosts

To ease the migration from LSF to Accelerator, a set of emulation scripts are provided for commands such as bsub and bjobs.

These scripts can be found in $VOVDIR/scripts/lsfemulation.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.130

Emulating LSF_JOBINDEX

In Accelerator, job arrays are just a simple way to submit lots of jobs that are pretty similar. Each element of the array is actually a

regular job. You can pass the index of the job in the array by variable substitution. To emulate LSF_JOBINDEX, you can use the

following technique:

% nc run -e SNAPSHOT+D,LSF_JOBINDEX=@INDEX@ -array 100 someCommandWithArgs

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.131

Frequently Asked Questions and Troubleshooting Tips

I'm doing an installation and configuration in a Windows environment - can I use PowerShell?

PowerShell is not supported; we strongly recommend not using PowerShell.

How do I contact Altair Engineering to get additional support, report a bug, or request a feature?

You can contact Altair Engineering at: https://www.pbsworks.com/ContactSupport.aspx.

Why can't I access Monitor's historical license usage through Accelerator?

Accelerator ships with a version of Monitor that is licensed to monitor current license activity only. This edition is called LMS

(Monitor Small). To access Monitor's historical license usage information, you must have the full version of Monitor.

What do I do in the event of a server failover or crash?

You can find a checklist for system recovery on the System Recovery page. You can find this address with the command:

nc cmd vovbrowser -url /cgi/sysrecovery.cgi

Where is the policy.tcl file? What about the taskers.tcl file? The resources.tcl and security.tcl files?

All .tcl configuration files for Accelerator are located at $VOVDIR/../../vnc/vnc.swd

How do I enable the retrace of more than 400 jobs at a time?

The limit to how many jobs can be run/retraced at any given moment is defined by the maxNormalClients config variable. To

change the variable, you can use the command:

vtk_server_config "maxNormalClients" maxnumberofjobs

How do I receive email notifications on job completion?

To receive automatic notification of major FlowTracer and Accelerator events, you should use the vovnotifyd daemon.

How do I track the memory usage of taskers?

VOV automatically keeps track of tasker memory usage. vovtasker keeps logs of 1 minute, 5 minute, and 10 minute load averages

of the machines where taskers are running on. The tasker reports are available on the Tasker Load page. The Accelerator URL can

be found with the command:

nc cmd vovbrowser -url /cgi/taskerload.cgi

Why are my jobs taking so long?

There are multiple reasons why FlowTracer jobs may be retracing slowly. Fortunately, Accelerator produces reports to help

diagnose any problems. Read about available reports at Resource Plots in the Altair Accelerator User Guide..

How do I change to another version of Accelerator?

To upgrade Accelerator software, refer to Upgrade Accelerator.

Proprietary Information of Altair Engineering

https://www.pbsworks.com/ContactSupport.aspx


Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.132

How do I access information on license usage?

Accelerator does not have this functionality. This functionality belongs to Monitor. If you have Monitor installed and fully

working, you can display license information at on the FTLM page.

Why are my licenses not fully utilized? I'm sure they're completely booked.

Your licenses are not fully utilized probably because they are not overbooked.

Essentially, the jobs being run do not use a license 100% of the time. Because there are jobs booked for licenses 100% of the

time, there will be times where licenses are not utilized. This is because one or more jobs will still be running, but be done with

the license that was booked. To rectify this, jobs are queued for more than 100% of the licenses, allowing another job to start and

utilize the open license.

How do I share licenses between jobs in queue?

Read more on license at License Sharing Support.

My tasker is sick! What do I do?

Your tasker is sick because it has not sent out a heartbeat for at least 3 minutes. This may mean your tasker has crashed or

disconnected. Once you have identified a sick tasker, you can proceed to troubleshoot it to fix the problem.

This list may be helpful:

• Check to make sure the machine itself is healthy. Make sure it is running, connected to the network, and not jammed.

• Check to see if vovtasker or vovtaskerroot is still running. If it isn't, then the tasker program itself has crashed. You should

restart the tasker program with:

vovtaskermgr start

• Check to see if vovtasker or vovtaskerroot is stuck. If it is, Linux commands such as strace and pstack should provide

you with enough information to fix it.

My tasker is healthy, but all jobs sent to the tasker come out failed. What is going on?

Your tasker is what is called a black hole. It appears healthy, but is in fact unable to execute jobs. There is functionality to enable

automatic detection of black holes in the Black Hole Detection page.

When a black hole is found, it would be prudent to send a simple job such as cp or sleep to the tasker to confirm its black hole

state.

I want to give a different amounts of resources to different sites. How can I do that?

FairShare is a mechanism to allocate CPU cycles among groups and user according to a policy. This would be your best bet.

How do I limit a resource for a particular user?

Although it is not recommended, information on limiting users can be found on the Limit Users page.

My job was killed because it failed to start within 1m00s!

This can be caused by a bad NFS mount point, or an automounter that is so overloaded, that it fails to mount the run

directory for the job in under a minute. Although this is a hardware problem, there is a workaround by changing the variable

VOV_MAX_WAIT_NO_START to a value over 1 minute.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.133

How do I setup prioritized licence usage?

For example, to use the licence FOO_BAR_A first, then the licence FOO_BAR_B second, use:

vtk_resourcemap_set FB-lic UNLIMITED "Licence:FOO_BAR_A  OR Licence:FOO_BAR_B"

In the jobclass. To set it in a resource map, use:

set VOV_JOB_DESC(resources) "Licence:FOO_BAR_A  OR Licence:FOO_BAR_B"

Why am I missing the plots when I look at a resource or license report?

Probably, what is causing the plots to be missing is a name resolution issue. To fix this, make sure VOV_HOST_HTTP_NAME

is set correctly. If all else fails, set this to the host's IP address, not network name. To update a running server, you must use the

command:

vtk_server_setenv VOV_HOST_HTTP_NAME XXX

vovresourced is not starting, says 'Failed to source'' too many resources'!

Most likely, you have exceeded the limit for resource maps in use. To raise this limit, change the maxResMap value in

policy.tcl.

How do I ensure that a tool is preemptable robustly?

Sometimes a tool will crash when preempted. To test whether this is Altair, or the tool vendor, try and run the tool without Altair

binaries (pure UNIX code) and see if the tool still crashes. The steps to do this are as follows:

1. Start the EDA tool(s) which you wish to test.

2. Use the UNIX command ps to find the PID of the EDA tool(s):

% ps | grep firefox
PID TTY          TIME CMD
349 ?        00:24:19 firefox

3. Send TSTP and CONT signals 10 seconds apart repeatedly. Try this in your shell:

% kill -TSTP 349 ; sleep 10 ; kill -CONT 349 ; sleep 10 ; kill -TSTP 349 ;
 (etc...)

Following these steps, if the tool crashes, then the problem is independent of Altair, as not a single line of Altair code was

executed.

I set a configuration in the policy.tcl file, but it is not taking effect!

Most likely, the file has not been read yet. Try a:

% nc cmd vovproject sanity

I have a lot of log files, how can I remove the older files?

An easy way to remove files that are over 60 days old is using the vovcleanup command:

% nc cmd vovcleanup -proj 

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.134

Note:  When preemption is heavily used, log files tend to build up.

How do I test a policy change before releasing it to production?

To test policy changes you can use the soft release mechanism. Here's a summary:

• Create a test queue.

• Set up the test to use files from the repository of the master queue.

• Test a hot file in a sandbox, identify and fix the errors before releasing it to the production domain.

I am upgrading the software - how do I suspend Accelerator from dispatching jobs?

Typically, to minimize the impact of upgrading the overhauling the system, the vovserver is stopped from dispatching new jobs,

while jobs that are running are allowed to complete on the vovtasker. There is more than one way to do this: Cold Upgrade, Hot

Upgrade and Rolling Hot Upgrade. For more information and instructions, refer to Upgrade Accelerator.

HPC Advice
This section provides recommendations to obtain the maximum performance from your Accelerator. As Accelerator is a fast

system, fine-tuning performance may only be needed when running several hundreds of thousands of jobs daily.

Use the Latest Altair Accelerator Release

The performance of the Accelerator scheduler is frequently updated. Using the most current version is recommended.

Use the vwn Wrapper

The wrapper vwn (alias for vw -d) is a faster wrapped because it avoids communication with vovserver. The regular vw checks

the timestamp of the outputs after the job is done, whereas vwn does not. An example is shown below:

% nc run -wrapper vwn -array 100 sleep 0

To further push performance of the scheduler, you may want to use two options:

• -nolog: this disables the creation of the log file

• -nodb: this disables the logging of the job execution used for adding job info to the database

% nc run -wrapper vwn -nodb -nolog -array 100 sleep 0

• The benefit of using vwn is speed.

• The disadvantage is that jobs that require the -wl option cannot be run. However, this disadvantage may be not be significant,

as -wl adds a relatively high load for what it does: -wl requires an extra notify client to handle the event generated when the

job terminates.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.135

Reduce the FairShare Window

When running millions of jobs per day, it is not important to keep a long FairShare history. Typically, a window of 2 to 5 minutes

tracks sufficient history. An example follows:

% nc cmd vovfsgroup modrec /some/fs/tree  window 2m

Reduce the autoForget Times

By forgetting jobs more quickly, the memory image of vovserver is kept smaller. An example is shown below:

# In policy.tcl
set config(autoForgetValid)  3m
set config(autoForgetFailed) 1h
set config(autoForgetOthers) 1h

Disable Wait Reasons

If analyzing what causes wait time in the workload, the wait reason analysis can be disabled as shown below:

# In policy.tcl
set config(enableWaitReasons) 0

Wait time analysis can then be re-enable as needed as shown below:

% nc cmd vovsh -x 'vtk_server_config enableWaitReasons 1'

### collect some data for a few minutes, then

% nc cmd vovsh -x 'vtk_server_config enableWaitReasons 0'

Disable File Access

Disabling file access is mostly a high-reliability option. By disabling file access, the vovserver never looks at any of the files in the

user workspaces, which avoids the risk of disk slowness or disk unavailability. An example is shown below:

% nc cmd vovsh -x 'vtk_server_config disablefileaccess 2'

Reduce Update Rate of Notify Clients

Notify clients, clients that are tapping the event stream from vovserver (such as nc gui, voveventmon or nc run -wl),

are updated immediately in the inner loop of the scheduler. If the environment includes hundreds of such clients, it may be

beneficial to slow down the update rate by setting the parameter notifySkip. The default value is 0: no skip. Typically, the

more events that take place, the more events that can be skipped without notice. For example, if several events are taking place,

setting notifySkip to 100, fewer updates may not be noticed. If the number of events is small, a one-second delay may be

noticed in some updates of the GUI. skipped without notice.

Note:  Regardless of the setting, the maximum time between updates is one second.

# In policy.tcl
set config(notifySkip) 100

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.136

NVIDIA™ GPUs Support in Accelerator
If you have machines with multiple GPUs, you can harness the power of those devices by following these guidelines, which have

been tested with up to 8 GPUs per machine.

1. Start a "vovtaskerroot" in each machine with one consumable hardware resource for each of the GPUs on that machine. Call

these resources GPU:Tesla<N> where N is an index starting from 0.

# In taskers.tcl
set res4gpus "GPU:Tesla0/1 GPU:Tesla1/1 GPU:Tesla2/1 GPU:Tesla3/1"
vtk_tasker_define nv001 -resources $res4gpus
vtk_tasker_define nv002 -resources $res4gpus
# ... 
vtk_tasker_define nvXXX -resources $res4gpus

2. Define job resources of type G:Tesla<J> where J is the number of GPUs that are requested by the job. For each J you

need to define the maps from the job resource to the HW resources of type GPU:TeslaN.

For example, G:Tesla1 is easy and it needs to map to the OR of any of the available GPUs, while G:Tesla4 is also

easy because it needs to map to the AND of all 4 devices.

# In resources.tcl
set mapOR  "GPU:Tesla0/1 OR GPU:Tesla1/1 OR GPU:Tesla2/1 OR GPU:Tesla3/1"
set mapAND "GPU:Tesla0/1    GPU:Tesla1/1    GPU:Tesla2/1    GPU:Tesla3/1"
vtk_resourcemap_set G:Tesla1 -max unlimited -map $mapOR 
# ...
vtk_resourcemap_set G:Tesla4 -max unlimited -map $mapAND 

The other maps for G:Tesla2 and G:Tesla3 are more complex, and for larger values of N it is not feasible to use

all possible combinations of devices. To help compute those maps, and to reduce the number of combinations to a

workable subset, we provide a procedure called findCombinations in $VOVDIR/scripts/hero/nvidia/

hero_nvidia_resources.tcl. Feel free to copy that file into your resources.tcl file.

proc findCombinations { list n } {
    #
    # Recursive procedure to find all combinations of 'n' elements from 'list'. 
    # 
    set result {}
    set l [llength $list]
    if { $l >= $n } {
        set inc 1
        for { set i 0 } { $i < $l } { incr i $inc } {
            set elem      [lindex $list $i] 
            set subList   [lreplace $list 0 $i]
            set subCombos {}
            if { $n > 1 } {
                set subCombos [findCombinations $subList [expr $n-1]]
                if { $l > 2 && [llength $subCombos] > 1 } {
                    ### When the combinations are too-many, use only the first
 combo.
                    set subCombos [lrange $subCombos 0 0]
                }
                foreach subCombo $subCombos {
                    lappend result [concat $elem $subCombo]
                }
            } else {
                lappend result $elem
            }

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.137

        }
    }
    return $result
}

## Maximum number of GPUS in any of the farm machines.
## Call the GPUS  "GPU:Tesla0 ... GPU:Tesla3 ..."
set MAX  8
set GPUS {}
for { set i 0 } { $i < $MAX } { incr i } {
    lappend GPUS "GPU:Tesla$i/1"
}

# A resource to count how many GPUs are in use.
vtk_resourcemap_set G:TeslaNum -total unlimited 

for { set i 1 } { $i <= $MAX } { incr i } {
    set options [findCombinations $GPUS $i ]
    set optionsWithParentheses ""
    set sep ""
    foreach opt $options {
        if { [llength $opt] > 1 } { 
            append optionsWithParentheses "$sep ( $opt )"
        } else {
            append optionsWithParentheses "$sep $opt"
        }
        set sep " OR"
    }
    vtk_resourcemap_set G:Tesla$i -total unlimited -map "G:TeslaNum#$i
 ( $optionsWithParentheses )"
}

3. Submit your workload using the wrapper vovgpu which is a script that interprets the "SOLUTION" computed by the

scheduler and passes the selected list of devices to the application via the environment variable VOV_GPUSET or with the

macro @GPUSET@. Note that VOV_GPUSET gives you a space-separated list of devices, while @GPUSET@ gives you a

comma-separated list.

With this setup, you can submit arbitrary workloads which request any number of GPUs.

% nc run -r G:Tesla1 -- vovgpu some_job_requiring_gpu -devices=@GPUSET@ -arg1 -arg2
% nc run -r G:Tesla2 -- vovgpu some_job_requiring_gpu -devices=@GPUSET@ -arg1 -arg2
% nc run -r G:Tesla3 -- vovgpu some_job_requiring_gpu -devices=@GPUSET@ -arg1 -arg2
% nc run -r G:Tesla4 -- vovgpu some_job_requiring_gpu -devices=@GPUSET@ -arg1 -arg2 

If you are new to Accelerator, it is worth remembering that you can get project tracking if you use the -jobproj option. For

FairShare, use the -g and -sg options in nc run, as in this example:

% nc run -r G:Tesla4  -jobproj MachineLearnAboutCats  -g /bu/ai/rd   vovgpu
 my_ml_app 

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.138

Simulation Scripts
This section describes job simulation scripts that emulate jobs. Such scripts are often used by developers as well as business

systems analysts.

Typically, these scripts perform no real functions and do not access licenses; they emulate the appearance of actual usage. These

scripts are often used to debug a system or configuration issue, test the capacity of the system, checking if the resources are

available for upcoming jobs, and setting benchmarks for dispatching jobs, such as 1000 calls of nc run /bin/date.

Why Developers Use Simulation Job Scripts

Sometimes developers need to test a flow under realistic conditions to ensure that all settings are correct that users have access to

resources, permissions and quotas, to run the jobs that they intend to run.

• Developers may not have access to the tools; they need to create simulated jobs for realistic testing in an artificial

environment.

• Developers may have access, but in an earlier stage of development, it may be preferable to create placeholder tools, thus

avoiding the use and cost of licenses.

Using Job Script Simulations for Troubleshooting and Planning

Running tests with simulated jobs can help identify hardware bottlenecks or other system limitations. Using test scripts with

proportional values help generate profiles very quickly, such as usage over time. Such scripts can be used with scaled memory/time

requirements, such as 1 Megabyte of memory of a test script represents 1 Gigabyte represents 1 Megabtyte of actual usage, or 1

minute of a test script represents 1 hour of actual usage.

For more basic flows in which each stage consists of similar types of jobs, test scripts may not be needed. However, for more

complex flows with jobs that have different characteristics and dependencies, estimating the longest path, how often job

requirements result in conflict and so on, are difficult to estimate without running tests that provide results to analyze.

% sleep   x
% cp  aa bb
% vovmemtime

Guidelines for Simulation Job Scripts

Frequently Used Code

• array

• cp file1file2: Emulates I/O data transfer.

Note:  To successfully view a data transfer on a job profile, very large files must be used; transactions

and other usages must continue at least one minute to be visible.

• sleep x: Do nothing during the specified time x. For tests and evaluations, it is best to include a random number

generator. Used alone, sleep jobs complete at known, precise times - based on the specified timing, several jobs could

complete simultaneously, which does not occur in actual job runs. For information about job profiles, refer to Job

Profiling in the Altair Accelerator User Guide..

• vovmetime: Allocates memory, also uses CPU.

• vtool: Used for calling licenses. vtool can be used to emulate calling licenses. For information, refer to Wrap

Unlicensed Tools in the Altair Monitor Administrator guide.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.139

Simple examples of scripts

Note:  Using the sleep command alone may cause unrealistic behaviors, such as all jobs completing at the

same time. Due to the scheduling of jobs and the availability of resources exact timing is unlikely. For more

realistic behaviour, including a random variation of timing is recommended.

bash version

% #!/bin/bash
% dur=$[ ( $RANDOM % $1 / 5 ) + $1 ]s
% echo "Sleeping for $dur"
$% sleep $dur

Sanity Check for vovserver
The command sanity is used to perform checks on the consistency of the trace and of other internal data structures.

Use sanity check when the server appears confused about the status of the trace.

% vovproject sanity

Use the reread command to re-read the server configuration. The files read are policy.tcl, security.tcl, equiv.tcl,

setup.tcl, and exclude.tcl.

You need not use reread after changes to taskers.tcl, it is not a vovserver config file. It is used by vovtaskermgr.

% vovproject reread

sanity does a wide variety of checks, cleanups, and rebuilds of internal data structures. Check the vovserver log file for

messages that include sanity. Here are some of the main things that it does:

• Clears all alerts

• Flushes journal and crash recovery files

• Clears IP/Host caches

• Stops and restarts resource daemon (vovresourced)

• Checks and cleans internal object attachments

• Verifies all places and jobs have sensible status

• Resets user statistics and average service time

• Checks the contents of system sets like System:jobs

• Removes older jobs from recent jobs set

• Makes sure all jobs in the running jobs set are actually running

• Verifies all sets have the correct size

• Clears the barrier-invalid flag on all nodes and recomputes it

• Clears empty retrace sets

• Checks preemption rules

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.140

• Checks all tasker machines, marking them sick if they are not responding

• Checks for rebooted tasker machines and terminates jobs attached to them

• Checks filesystems on tasker machines and verifies mount points

• Clears resource list caches from jobs

• Clears and rebuilds job class sets

• Creates limit resources for ones that are missing

• Verifies grabbed resources (non running jobs should not have any)

• Makes sure only running jobs have stolen resources

• Reserves resources for all running jobs

• Create any missing resource maps for groups and priorities

• For each job with I/O, makes sure outputs are newer than inputs

• Makes sure any file with running status has an input job with running status

• Verifies the status of all nodes

• Checks for stuck primary inputs (primary inputs should only be VALID or MISSING)

• If a file is invalid or missing, but the input job is VALID, turn the job INVALID

• Finds running jobs without tasker and changes the status to SLEEPING

• Makes sure all input files of a VALID job are also VALID

• Makes sure all output files of a job have the same status as the job

• Recomputes waitreason counts

• Checks job queue buckets

• Verifies link between job queue buckets and resource maps

• Makes sure all queued jobs have job queue buckets

• Checks FairShare groups

• Checks for a license

Disable Regular User Login
This section provides guidelines to disable the ability for those with the USER level of privilege to log onto selected tasker

machines. Most often, for better throughput, this is applied to use selected machines as part of a computing resource pool

exclusively through Accelerator.

Note:  Disabling the login to a vovtasker is not a normal or supported use of VOV functionality.

Disabling user login to the selected tasker machines is done in two phases:

1. Disable user logins

2. Set up vovtsd

Phase 1

1. Disable all user logins except for the superuser or root on the selected machine.

2. Create the file /etc/nologin. The content of the file will be the message the users receive when they try to login.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.141

An example of /etc/nologin on host h01 is shown below:

% cat /etc/nologin
Login disabled. Contact admin for help.

When a regular (non-root) user tries to login, the message shown to the user will be as follows:

% rlogin -l john h01
john's Password:
Login disabled. Contact admin for help.

login:

Phase 2: Set Up vovtsd When login is disabled for the USER level and VOV ADMIN is typically not a root user, it is not possible

to use rsh or ssh to either start or stop taskers from remote machines, such using the command vovtaskermgr. In this scenario,

vovtsd can be used to manage the tasker machines remotely.

3. Log onto the machine as root, switch to VOV ADMIN and then start vovtsd.

4. From a remote machine, start or stop a tasker on this machine using a previously used method, such as using the command

vovtaskermgr or ncmgr reset, the GUI or a browser.

% su - vncadmin
% vovtsd -normal

5. Step 4 assumes that the shell for user "vncadmin" is set up to run the VOV software. Some accounts do not have this setup.

In that case, the vovboot script could be used to start vovtsd.

% su - root
% /full/path/to/vov/installation/common/scripts/vovboot vovtsd -normal

To start vovtsd at boot time, consider deployment of the S99vovtsd script, a copy of which can be found in the directory

$VOVDIR/etc/boot/S99vovtsd. Copy this script into /etc/rc3.d/S99vovtsd and customize it to fit the installation

requirements.

• Ensure that vovtsd is running.

• Automatically restart vovtsd on reboot of the machine. This enables the machine to provide continuous computing power

without having to log in as root and manually start vovtsd.

Note:  If vovtsd is already running on a host and starting another host is tried, that second host will not start

because the port is already occupied; starting vovtsd on a regular basis is a good way to ensure it is always

running. Keeping the host running can be done with a cron job as shown in the example below:

% su - vncadmin% crontab -e
# Start vovtsd every thirty minutes
1,31 * * * *  /full/path/to/VOV/common/scripts/vovboot vovtsd -normal > /
dev/null 2>&1 

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.142

Auxiliary Group Membership

Theory

If VOV_USE_INITGROUPS is set, the subtasker calls initgroups(). This is an OS call that sets all (or max 16) auxiliary

groups. The resulting list of groups is not cached. Another job will call initgroups() again.

The default is to not call initgroups because it may load the name services too much.

By default, the vovtasker calls the external utility vovgetgroups, which uses the value of VOV_ALARM to decide how long

to wait for a reply (default 10 seconds). The VOV_USE_VOVGETGROUPS environment variable can be used to control this

behavior:

Set to 0 to disable the call to the external utility and use the getgrent() POSIX API function to find all groups that are valid

for a user. If there are more than 16, the list is truncated to the first 16. The list is cached by vovtasker, so only the first job for a

user causes traffic with the name services. This is only recommended in small environments, as this method can create significant

delays, and even blocking conditions, in complex environments (e.g. Linux with LDAP).

Set to 2 to continue to use the external utility, but instruct the utility to call the getgrent() POSIX API function instead of

the default call to getgrouplist(). This is mainly for debugging purposes, since this mode of operation results in slower

processing of group information.

History

Prior to 2016.09 & 2015.09u8

If VOV_USE_VOVGETGROUPS was set to any value, when a tasker needs to get group data it will use the

vovgetgroups external utility (a separate executable). This utility is robust to LDAP errors or timeouts which would

otherwise cause the getgrent library call to hang indefinitely (and block the tasker from issuing further jobs).

Prior to customers switching to Centos6.x and SSSD name service, the use of VOV_USE_VOVGETGROUPS was

recommended. After the switch to Centos6.x/SSSD, a bug was found that prevented all groups from being fetched.

Switching to VOV_USE_INITGROUPS=1 and leaving VOV_USE_VOVGETGROUPS unset appeared to fix the problem,

but at the probable cost of reduced performance and increased name service load.

2016.09 & 2015.09u8 and Later Versions

If VOV_USE_VOVGETGROUPS was set to any value other than 1, it would behave like pre 2016.09 code and use

getgrent(). If VOV_USE_VOVGETGROUPS was set to 1, it would use getgrouplist(), which is a newer utility

(but still old) to get group information with higher performance.

The downside to setting VOV_USE_VOVGETGROUPS=1 in 2016.09 is that there may be some off-beat OS's that don't

support it. However, it seems to be faster, work with SSSD, and doesn't load the name service as much.

The recommendation based on the review of the history and the code is the following:

• Use VOV_USE_VOVGETROUPS=1 and leave VOV_USE_INITGROUPS unset if you are on <2015.09u8 earlier

and not using CentOS6.6 with SSSD (uses non blocking getgrent)

• Leave VOV_USE_VOVGETGROUPS unset and set VOV_USE_INITGROUPS=1 if you are on < 2015.09u8 and

want to use CentOS6.6/SSSD (uses an extra group init & getgrent)

• Set VOV_USE_VOVGETGROUPS=1 and leave VOV_USE_INITGROUPS unset if you are on 2016.09 or

>2015.09u7 and running a common OS (non blocking, getgrouplist)

• Set VOV_USE_VOVGETGROUPS=1 and leave VOV_USE_INITGROUPS unset if you are on 2016.09 or

>2015.09u7 and running an uncommon OS (non blocking, getgrent).

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.143

If both are set then VOV_USE_VOVGETGROUPS dominates.

Troubleshooting
Answers to common questions when using Monitor.

The Server Doesn't Start

1. Make sure you have a valid RLM license. Type:

% rlmstat -a

2. Check if the server for your project is already running on the same machine. Do not start an Accelerator project server more

than once.

% vovproject enable project% vsi

3. Check if the server is trying to use a port number that is already used by another vovserver or even by another application.

VOV computes the port number in the range [6200,6455] by hashing the project name. If necessary, select another project

name, or change host, or use the variable VOV_PORT_NUMBER to specify an known unused port number. The best place

to set this variable is in the setup.tcl file for the project.

4. Check if the server is trying to use an inactive port number that cannot be bound. This can happen when an application,

perhaps the server itself, terminates without closing all its sockets.

The server will exit with a message similar to the following:

...more output from vovserver...
vs52 Nov 02 17:34:55          0                3      /home/john/vov
vs52 Nov 02 17:34:55 Adding licadm@venus to notification manager
vs52 Nov 02 17:34:55 Socket address 6437 (net=6437)
vs52 ERROR Nov 02 17:34:55 Binding TCP socket: retrying 3
vs52 Nov 02 17:34:55 Forcing reuse...
vs52 ERROR Nov 02 17:34:58 Binding TCP socket: retrying 2
vs52 Nov 02 17:34:58 Forcing reuse...
vs52 ERROR Nov 02 17:35:01 Binding TCP socket: retrying 1
vs52 Nov 02 17:35:01 Forcing reuse...
vs52 ERROR Nov 02 17:35:04 Binding TCP socket: retrying 0
vs52 Nov 02 17:35:04 Forcing reuse...
vs52 ERROR Nov 02 17:35:04 
PROBLEM:  The TCP/IP port with address   6437   is already being used.

POSSIBLE EXPLANATION:
        - A VOV server is already running   (please check)
        - The old server is dead but some
          of its old clients are still alive  (common)
        - Another application is using the
          address  (unlikely)

ACTION: Do you want to force the reuse of the address?

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.144

a) If this happens, list all VOV processes that may be running on the server host and that may still be using the port. For

example, you can use:

% /usr/ucb/ps auxww | grep vov
john   3732  0.2  1.5 2340 1876 pts/13   S 17:36:18  0:00 vovproxy -p
 acprose -f - -b
john   3727  0.1  2.2 4816 2752 pts/13   S 17:36:16  0:01 vovsh -t /rtda/
VOV/5.4.7/sun5/tcl/vtcl/vovresourced.tcl -p acprose
...

b) Wait for the process to die on its own, or you can kill it, for example with vovkill.

% vovkill pid

c) Restart the server.

5. You run the server as the Accelerator administrator user. Please check the ownership of the file security.tcl in the

server configuration directory vnc.swd.

UNIX Taskers Don't Start

Accelerator normally relies on remote shell execution to start the taskers, using either rsh or ssh.

• If using rsh try the following:

% rsh host vovarch

where host is the name of a machine on which there are problems starting a tasker.

This command should return a platform dependent string and nothing else. Otherwise, there are problems with either with the

remote execution permission or the shell start-up script.

• If the error message is similar to "Permission denied", check the file .rhosts in your home directory. The file should

contain a list of host names from which remote execution is allowed. See the manual pages for rsh and rhosts for details.

You may have to work with your system administrators to find out if your network configuration allows remote execution.

• If using ssh, perform the test above but use ssh instead of rsh. For more details about ssh see SSH Setup in the VOV

Subsystem Administrator Guide.

• If you get extraneous output from the above command, the problem is probably in your shell start-up script. If you are a C-

shell user, check your ~/.cshrc file. The following are guidelines for a remote-execution-friendly .cshrc file:

# Echo messages only if the calling shell is interactive. You can test if a shell is interactive by checking the existence of

the variable prompt, which is defined for interactive shells. Example:

# Fragment of .cshrc file.
if ( $?prompt ) then
echo "I am interactive"
endif

# Many .cshrc scripts exit early if they detect a non interactive shell. It is possible that the scripts exit before sourcing

~/.vovrc, which causes Accelerator to not be available in non-interactive shells. Compare the following fragments of

.cshrc files and make sure the code in your file works properly:

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.145

The following example will not work properly for non-interactive shells:

if ( $?prompt ) exit
source ~/.vovrc

This example is correct, source .vovrc and then check the prompt variable:

source ~/.vovrc
if ( $?prompt ) exit

This example is also correct:

if ( $?prompt ) then
# Define shell aliases
...
endif
source ~/.vovrc

# Do not apply exec to a sub shell. This will cause the rsh command to hang.

# Do not do this in a .cshrc file
exec tcsh

License Violation

Accelerator is licensed by restricting the number of taskers. This is the number of all unique hosts that run taskers in all instances

of Accelerator servers that use the same license.

You can find out the capacity of your license with the following command:

% rlmstat -avail

The file $VOVDIR/../../vnc/vnc.swd/taskers.tcl defines the list of hosts that are managed by the server. Make sure

the number of tasker hosts is within the license capability.

Crash Recovery

In the event of a crash or failover, you can find a checklist of what to do on the System Recovery page.

This address can found using the command:

nc cmd vovbrowser -url /cgi/sysrecovery.cgi

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.146

Deprecated Commands
This section lists the recently deprecated and obsoleted Accelerator commands and options, and the corresponding current

commands and options.

Deprecated Accelerator commands and options

Deprecated/Obsoleted Command or Option Current Command

lmresources Current command: lmhandlesall. For more information,

refer to Match Jobs to Handles

-J Current command: -N. These options are used to set JobName.

For more information, refer to Jobname Attribute. Also, see

Node Fields for all the fields.

ccsub Current command: The option -clearcase in nc run. For more

information, refer to Job Resources

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.147

LSF Emulation
This document is intended for those who have been using the Platform LSF batch system and are now moving over to the

Accelerator system.

The following information describes the available resources, specific scripts, and guidelines of using those resources.

The Altair Accelerator installation includes scripts that are designed to assist the transition from the Platform LSF batch system

to the Accelerator system. The LSF scripts are provided in addition to the scripts that support the ability to customize Accelerator

capabilities as well as add new commands.

Note:  The options supported by emulation these scripts are not 100% complete; they do support many of the

applications that are frequently used.

The LSF emulation commands are also useful with EDA programs such as Cadence ADE and Altos Liberate that do not support

Accelerator directly.

The emulated commands include the following:

• bhist

• bhosts

• bjobs

• bkill

• bmgroup

• bpeek

• bqueues

• bstat

• bsub

• lshosts

• lsid

The scripts that emulate the above commands are available in the directory $VOVDIR/scripts/lsfemulation, which is not

in the PATH in the default setup. This setup avoids collision with the platform scripts and commands.

The emulated commands are added to the path by adding the Altair Accelerator named environment LSFEMUL. The LSFEMUL

environment setup is installed in $VOVDIR/etc/environments/LSFEMUL.*.

% ves +LSFEMUL
% bsub sleep 10
% bjobs -a

For maximize the benefits of using Accelerator it is strongly encouraged to use the native Accelerator commands for new projects

and to migrate existing projects from LSF Platform commands and Altair Accelerator scripts to the Accelerator commands.

Configure Resource Mapping

The resources used by LSF, expressed by the -R option in bsub, are significantly different from the resource maps in Accelerator.

LSF bsub emulation allows multiple -R directives.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.148

To map resources from one system to the other, customize the file $VOVDIR/local/lsfemulation/config.bsub.tcl

This file contains a set of assignments to the Tcl arrays MAP_LSF2NC() and MAP_RUSAGE().

Note:  This file is used only by the Altair Accelerator bsub emulator.

An example for config.bsub.tcl can be found in the usual location for configuration files, a subdirectory of $VOVDIR/

etc/config:

File: $VOVDIR/etc/config/lsfemulation/config.bsub.tcl

#
# Sample configuration of the bsub emulation.
#
# This file must be placed in $VOVDIR/local/lsfemulation/config.bsub.tcl
#

# If you want support for exclusive access to machines (option -x)
# you need to:
# 1. Uncomment the line below 'set bsubopt(percent) 1'
# 2. Make sure all taskers offer the resource PERCENT/100
# 3. Make sure all jobs request at least PERCENT/1 (see vnc_policy.tcl)
set bsubctrl(percent) 1

# Set this to 1 to cause bsub to always send email
set bsubctrl(alwaysmail) 1

# Truncate emailed log files after this many bytes
# negative values (e.g. -1) mean mail the whole file (BEWARE)
# zero means accept the default (65536 bytes)
set bsubctrl(logmax) 0

# Emulation transforms -m hostnames into an OR expression,
# which can slow down the NC scheduler if too complex.
# Hosts after this count are silently dropped to avoid slow scheduling
set bsubctrl(moptmax) 6

# Map LSF 'select' resources into NC resources.
# select[rhel4]  -> "linux"
set MAP_LSF2NC(rhel3) "linux"
set MAP_LSF2NC(rhel4) "linux"
set MAP_LSF2NC(rhel5) "linux"
set MAP_LSF2NC(RH4_64) "linux x86_64"

# Map LSF 'rusage' resources into NC resources,
# typically resources of type License:
# Example:
#  rusage[dc=1]   -> "License:Design-Compiler"

set MAP_RUSAGE(dc)   "License:Design-Compiler"
set MAP_RUSAGE(pt)   "License:PrimeTime"
set MAP_RUSAGE(drc)  "License:lic_drc"
set MAP_RUSAGE(lvs)  "License:lic_lvs"
set MAP_RUSAGE(erc)  "License:lic_erc"

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.149

Emulate the LSF Report in the Output Log

Some legacy scripts expect some LSF specific lines in the log file of a job. This can be achieved with a post-command that adds

those lines to the log. An example of such command is post_job_report.sh.

#!/bin/csh -f
# -*- Tcl -*- \
   exec vovsh -f $0 $*:q

set usage "
Description:
  post_job_report.sh

  Used for some jobs submitted with the bsub emulator:

Example:
% ves +LSFEMUL
% bsub -Ep $VOVDIR/etc/post/post_job_report.sh -J test.lsf_with_jobreport cal 2015
"

if { $argv == {} } {
    VovPrintUsage $usage
}

source $env(VOVDIR)/tcl/vtcl/vovlsfemulib.tcl

set jobId       [lindex $argv 0]
set logFileName [lsfEmuGetJobLogFileName $jobId]
set report      [lsfEmuFmtJobReport $jobId]

if { $logFileName ne "" } {
    VovMessage "Adding job report to $logFileName"
    set fp [open $logFileName "a"]
    puts $fp [lsfEmuFmtJobReport $jobId]
    close $fp
} else {
    VovMessage "No log file found for job $jobId\n$report"

    set whyOld ""
    set whyNew "Cannot find a log file for this job $jobId"
    if { [catch {set whyOld [vtk_prop_get $jobId WHY]}] } {
        set why $whyNew
    } else {
        set why "$whyOld\n$whyNew\n$report"
    }
    catch {vtk_prop_set $jobId WHY $why}
}

exit 0

The post command can be specified with the option -Ep of the bsub emulator. For example:

% bsub -Ep $VOVDIR/etc/post/post_job_report.sh   [OTHER OPTIONS]
... command

Debug the LSF Emulation Layer Usage

To debug as well as test and verify an LSF emulation script, it can be helpful to view the issued commands and the used options

and values.

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Altair Accelerator User Guide p.150

If the environment is set with variable VOV_LOG_LSFEMUL to the name of a file, all emulation commands will be logged in that

file. For example:

% setenv VOV_LOG_LSFEMUL ~/lsfemul.log
% bsub sleep 11
% lsid
% cat $VOV_LOG_LSFEMUL

Proprietary Information of Altair Engineering



Legal Notices



Altair Accelerator 2024.1.0

Legal Notices p.152

Intellectual Property Rights Notice
Copyrights, trademarks, trade secrets, patents and third party software licenses.

Copyright © 1986-2023 Altair Engineering Inc. All Rights Reserved.

This Intellectual Property Rights Notice is exemplary, and therefore not exhaustive, of intellectual property rights held by Altair

Engineering Inc. or its affiliates. Software, other products, and materials of Altair Engineering Inc. or its affiliates are protected

under laws of the United States and laws of other jurisdictions. In addition to intellectual property rights indicated herein, such

software, other products, and materials of Altair Engineering Inc. or its affiliates may be further protected by patents, additional

copyrights, additional trademarks, trade secrets, and additional other intellectual property rights. For avoidance of doubt, copyright

notice does not imply publication. Copyrights in the below are held by Altair Engineering Inc. or its affiliates. Additionally, all

non-Altair marks are the property of their respective owners.

This Intellectual Property Rights Notice does not give you any right to any product, such as software, or underlying intellectual

property rights of Altair Engineering Inc. or its affiliates. Usage, for example, of software of Altair Engineering Inc. or its affiliates

is governed by and dependent on a valid license agreement.

Altair Simulation Products

Altair® AcuSolve® ©1997-2023

Altair Activate®©1989-2023

Altair® Battery Designer™ ©2019-2023

Altair Compose®©2007-2023

Altair® ConnectMe™ ©2014-2023

Altair® EDEM™ © 2005-2023

Altair® ElectroFlo™ ©1992-2023

Altair Embed® ©1989-2023

Altair Embed® SE ©1989-2023

Altair Embed®/Digital Power Designer ©2012-2023

Altair Embed® Viewer ©1996-2023

Altair® ESAComp® ©1992-2023

Altair® Feko® ©1999-2023

Altair® Flow Simulator™ ©2016-2023

Altair® Flux® ©1983-2023

Altair® FluxMotor® ©2017-2023

Altair® HyperCrash® ©2001-2023

Altair® HyperGraph® ©1995-2023

Altair® HyperLife® ©1990-2023

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Legal Notices p.153

Altair® HyperMesh® ©1990-2023

Altair® HyperSpice™ ©2017-2023

Altair® HyperStudy® ©1999-2023

Altair® HyperView® ©1999-2023

Altair® HyperViewPlayer® © 2022-2023

Altair® HyperWorks® ©1990-2023

Altair® HyperXtrude® ©1999-2023

Altair® Inspire™ ©2009-2023

Altair® Inspire™ Cast ©2011-2023

Altair® Inspire™ Extrude Metal ©1996-2023

Altair® Inspire™ Extrude Polymer ©1996-2023

Altair® Inspire™ Form ©1998-2023

Altair® Inspire™ Mold ©2009-2023

Altair® Inspire™ PolyFoam ©2009-2023

Altair® Inspire™ Print3D ©2021-2023

Altair® Inspire™ Render©1993-2023

Altair® Inspire™ Studio ©1993-2023

Altair® Material Data Center™ ©2019-2023

Altair® MotionSolve® ©2002-2023

Altair® MotionView® ©1993-2023

Altair® Multiscale Designer® ©2011-2023

Altair® nanoFluidX® ©2013-2023

Altair® OptiStruct® ©1996-2023

Altair® PollEx™ ©2003-2023

Altair® PSIM™ © 2022-2023

Altair® Pulse™ ©2020-2023

Altair® Radioss® ©1986-2023

Altair® romAI™ © 2022-2023

Altair® S-FRAME® © 1995-2023

Altair® S-STEEL™ © 1995-2023

Altair® S-PAD™ © 1995-2023

Altair® S-CONCRETE™ © 1995-2023

Altair® S-LINE™ © 1995-2023

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Legal Notices p.154

Altair® S-TIMBER™ © 1995-2023

Altair® S-FOUNDATION™ © 1995-2023

Altair® S-CALC™ © 1995-2023

Altair® S-VIEW™ © 1995-2023

Altair® Structural Office™ © 2022-2023

Altair® SEAM® © 1985-2023

Altair® SimLab® ©2004-2023

Altair® SimLab® ST © 2019-2023

Altair SimSolid® ©2015-2023

Altair® ultraFluidX® ©2010-2023

Altair® Virtual Wind Tunnel™ ©2012-2023

Altair® WinProp™ ©2000-2023

Altair® WRAP™ ©1998-2023

Altair® GateVision PRO™ ©2002-2023

Altair® RTLvision PRO™ ©2002-2023

Altair® SpiceVision PRO™ ©2002-2023

Altair® StarVision PRO™ ©2002-2023

Altair® EEvision™ ©2018-2023

Altair Packaged Solution Offerings (PSOs)

Altair® Automated Reporting Director™ ©2008-2022

Altair® e-Motor Director™ ©2019-2023

Altair® Geomechanics Director™ ©2011-2022

Altair® Impact Simulation Director™ ©2010-2022

Altair® Model Mesher Director™ ©2010-2023

Altair® NVH Director™ ©2010-2023

Altair® NVH Full Vehicle™ © 2022-2023

Altair® NVH Standard™ © 2022-2023

Altair® Squeak and Rattle Director™ ©2012-2023

Altair® Virtual Gauge Director™ ©2012-2023

Altair® Weld Certification Director™ ©2014-2023

Altair® Multi-Disciplinary Optimization Director™ ©2012-2023

Altair HPC & Cloud Products

Altair® PBS Professional® ©1994-2023

Proprietary Information of Altair Engineering



Altair Accelerator 2024.1.0

Legal Notices p.155

Altair® PBS Works™ © 2022-2023

Altair® Control™ ©2008-2023

Altair® Access™ ©2008-2023

Altair® Accelerator™ ©1995-2023

Altair® Accelerator™ Plus ©1995-2023

Altair® FlowTracer™ ©1995-2023

Altair® Allocator™ ©1995-2023

Altair® Monitor™ ©1995-2023

Altair® Hero™ ©1995-2023

Altair® Software Asset Optimization (SAO) ©2007-2023

Altair Mistral™ ©2022-2023

Altair® Grid Engine® ©2001, 2011-2023

Altair® DesignAI™ ©2022-2023

Altair Breeze™ ©2022-2023

Altair® NavOps® © 2022-2023

Altair® Unlimited™ © 2022-2023

Altair Data Analytics Products

Altair Analytics Workbench™ © 2002-2023

Altair® Knowledge Studio® © 1994-2023

Altair® Knowledge Studio®for Apache Spark © 1994-2023

Altair® Knowledge Seeker™ © 1994-2023

Altair® Knowledge Hub™ © 2017-2023

Altair® Monarch® © 1996-2023

Altair® Panopticon™ © 2004-2023

Altair® SmartWorks™ © 2021-2023

Altair SLC™ ©2002-2023

Altair SmartWorks Hub™ ©2002-2023

Altair® RapidMiner® © 2001-2023

Altair One™ ©1994-2023

Third Party Software Licenses

AcuConsole contains material licensed from Intelligent Light (www.ilight.com) and used by permission.

For a complete list of Altair Accelerator Third Party Software Licenses, please click here.

Proprietary Information of Altair Engineering

third_party_licenses.pdf


Altair Accelerator 2024.1.0

Legal Notices p.156

Technical Support
Altair provides comprehensive software support via web FAQs, tutorials, training classes, telephone and e-mail.

Altair One Customer Portal

Altair One (https://altairone.com/) is Altair’s customer portal giving you access to product downloads, Knowledge Base and

customer support. We strongly recommend that all users create an Altair One account and use it as their primary means of

requesting technical support.

Once your customer portal account is set up, you can directly get to your support page via this link: www.altair.com/customer-

support/.

Altair Training Classes

Altair training courses provide a hands-on introduction to our products, focusing on overall functionality. Courses are conducted

at our main and regional offices or at your facility. If you are interested in training at your facility, please contact your account

manager for more details. If you do not know who your account manager is, e-mail your local support office and your account

manager will contact you

Telephone and E-mail

If you are unable to contact Altair support via the customer portal, you may reach out to the technical support desk via phone or e-

mail. You can use the following table as a reference to locate the support office for your region.

When contacting Altair support, please specify the product and version number you are using along with a detailed description

of the problem. It is beneficial for the support engineer to know what type of workstation, operating system, RAM, and graphics

board you have, so please include that in your communication.

Location Telephone E-mail

Australia +61 3 9866 5557

+61 4 1486 0829

anz-pbssupport@altair.com

China +86 21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Proprietary Information of Altair Engineering

https://altairone.com/Dashboard
https://www.altair.com/customer-support/
https://www.altair.com/customer-support/
mailto:anz-pbssupport@india.altair.com
mailto:es@altair.com.cn
mailto:pbssupport@europe.altair.com
mailto:pbssupport@europe.altair.com
mailto:pbs-support@india.altair.com
mailto:pbssupport@europe.altair.com
mailto:pbs@altairjp.co.jp
mailto:support@altair.co.kr


Altair Accelerator 2024.1.0

Legal Notices p.157

Location Telephone E-mail

Malaysia +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0) 46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

South America +55 11 3884 0414 br_support@altair.com

United Kingdom +44 (0)1926 468 600 pbssupport@europe.altair.com

See www.altair.com for complete information on Altair, our team and our products.

Proprietary Information of Altair Engineering

mailto:pbs-support@india.altair.com
mailto:pbssupport@altair.com
mailto:pbssupport@europe.altair.com
mailto:pbssupport@europe.altair.com
mailto:pbs-support@india.altair.com
mailto:pbssupport@europe.altair.com
mailto:br_support@altair.com
mailto:pbssupport@europe.altair.com
http://www.altair.com/


Index

Special Characters

$subdirectories, cleaning 66

A

Accelerator and ClearCase: nc run -clearcase 101

Accelerator quick start 9

Accelerator User Guide 4

access to help 7

accessing resources for jobs 101

active component, distributed parallel job 49

ADE, Cadence 147

advanced information 111

allocate resources, FairShare 63

autoforget jobs 36

autoforget log files 36

autoforget parameters 36

automatic rerunning of failed jobs 38

auxiliary group membership 142

B

backwards compatibility 146

bhist, emulated 147

bhosts, emulated 147

bjobs, emulated 147

bkill, emulated 147

browser-based setup 27

browser, submitting jobs from 27

bsub, emulated 147

C

c-shell, TCSH user setup 16

caching, nc list 75

CGROUPS for jobs 105

change the default queue with nc_queue 45

choosing the FairShare group 63

class, job 41

clean up log files 66

ClearCase view [] 101

command line interface 12

command line, run jobs 18

control the environment 98, 99

CPU progress and run status indicators 70

CPUPROGRESS, percentage of CPU time 70

158



CPUTIME, total CPU time accumulated 70

cross-platform job runs 101

D

debug jobs example 68

debug jobs without running Accelerator 68

deep, clean option 66

default output of nc run 25

deprecated Accelerator commands and options 146

detailed job information 28

disable handle matching 110

disable regular user login 140

distributed parallel component rank and resources 50

distributed parallel properties 50

distributed parallel slot timeout 52

distributed parallel support 49

E

emulate job, test script 138

emulation, LSF 147

environment control 98, 99

environment, cross-platform job 101

example, submit a single job 25

example, submit multiple jobs 26

exclamation-point (bang) operator 12

F

FairShare group, managed by policy or vovsgroup 63

FairShare group, selected by user 63

FairShare groups 63

field reference 123

find available jobclasses 41

forget jobs 35

format strings 123

frequently asked questions and troubleshooting tips 131

G

get detailed information about a job 29

get job information 28

graphical view of job progress and results 30

groups 63

H

handle matching, disable 110

159



help, Accelerator 7

help, quick start 9

HPC advice 134

I

icons 80

incompatible fields 126

integration with Monitor-basic 4

interactive jobs 57

interactive jobs restrictions and consequences 61

invoke the GUI 79

J

job arrays 40

job i/o profiling 73

job placement policies 64

job profiling 71

job resource plots 95

job resources 101

job running overview 18

job runtime - monitoring and profiling 70

job setup options 40

job status 30

job status notification 78

job submission arguments 56

job, emulate with script [] 138

job, waiting for resources 46

jobclasses 41

jobname attribute 40

jobs, rerun 37

jobs, show current information 79

jobs,pending 46

jobs,queued 46

jobs,scheduled 46

L

license handle, match to jobs 108

listing jobs 75

log file, interactive job 57

log files 42

LSF

emulation 147

LSF emulation 147, 147

LSF migration 129

LSF, platform 147

160



M

MAILTO notifications, job status 78

MAILTO properties 78

manage jobs 32

match jobs to handles 108

metrics, scheduler 79

migrate from LSF 129

modify running jobs 57

modify scheduled jobs 59

monitor job, RAM, CPU and children 70

monitor resource availability 92

monitor resource utilization 92

monitor the workload 75

Monitor-basic integration 4

monitoring jobs, taskers and resources 88

multiphase support 54

multiple jobs, submit 26

N

nc clean 66

nc forget 35, 35

nc jobclass 41

nc list 75, 75

nc rerun 38

nc run 18

nc stop 33

nc summary 77

nc wait 32, 32

nc why 46, 46

nc_gui 79

NC_QUEUE environment variable 44

ncmgr command 10

ncmgr start 44

node fields 112

notification of job status 78

nozap, clean option 66

NUMA control and CPU affinity 104

NVIDIA GPUs support in Accelerator 136

O

online help 7

OpenMPI support 54

P

PDF, access 7

161



policy 63

post-condition 42

pre-command and post-command job condition 42

pre-condition 42

pre-pending and appending arguments in a job submission 56

predicates, in selection rules 126

priority 47

Q

queue name, default 9

queue selection 44

quick reference 14

quick start help 9

R

request a license before executing jobs 102

rerun jobs 37

resource availability 92

resource plots 92

resource statistics 90

resource utilization 92

resource/handle matching 110

run jobs with CLI commands 18

running interactive jobs 57

RUNSTATUS field values 70

S

sanity check for vovserver 139

schedule job submission 44

scheduled jobs 46

scheduler metrics 79

script, emulate jobs 138

select a named environment 99

select a queue name 45

select FairShare group 63

selection rules 126

set status 31

set the range for VovId 111

setting up the user shell 16

showing the hosts/taskers 82

simulation scripts 138, 138

single job submit example 25

size specification 123

specify FairShare subgroup, allocate computing resources 63

start a queue 44

162



statistics overview 90, 90

status of a set 31

status of jobs 30

stop jobs 33

stuck job, troubleshoot with LASTCPUPROGRESS 70

submission of jobs with pre-condition or post-condition 42

submit job, with jobclass 41

submit jobs 18

submit jobs from the browser 27

submit jobs using jobclasses 41

submit jobs with CLI commands 25

submitted job information display 27

summary of all jobs 77

system overview 4

T

time specifications 124

troubleshoot stuck jobs 70

troubleshooting 143

troubleshooting - crash recovery 145

troubleshooting - license violation 145

troubleshooting - server doesn't start 143

troubleshooting - UNIX taskers don't start 144

U

use Accelerator help 7

use containers for jobs 107

use vovselect for querying 84

user setup: bourne shell, k-shell, z-shell, bash 16

user setup: c-shell, TCSH 16

user setup: Windows command shell 16

user shell setup 16

using different resources and jobclasses 51

using jobclasses 41

using snapshot with named environment 99

utility vovresreq: request a license before executing jobs 102

V

verify your setup 17

view job progress and results 27

vnc_logs, cleaning 66

vnc, default name of queue 9

VNC: quick reference 14

vov 16

VOV 9, 12, 14, 111, 123, 124, 147

163



VOV_DP_COUNT 49

VOV_DP_RANK 49

VOV_DP_TOPJOBID 49

VOV_ENV 98

VOV_JOB_DESC 41, 71

VOV_JOBINDEX 40

VOV_LIMIT_cputime 33

VOV_LOG_LSFEMUL 147

VOV_STDOUT_SPEC 7

VOV_STOP_SIGNAL_DELAY 33

VOV_STOP_SIGNALS 33

vovarch 16

VOVARCH 98

vovbrowser 7

vovbuild 7, 80

vovcalibremt 49

vovconsole 79

VovDate 124

VOVDIR 9, 16, 44, 54, 71

vovdoc 7, 7

vovenvutils 98

vovfire 12

vovfsgroup 63

vovid 7

VovId 111

vovinit 16

vovlsfemulib 147

vovmemtime 33, 138

VovMessage 147

vovmetime 138

vovmpirun 54

vovnotifyd 78

vovparallel 49

vovparallel close 53

VovParseTimeSpec 124

VovPrintUsage 147

vovproject 139

vovprop 78

vovproperties 101, 102

vovrc 16

vovresgrab 102, 104

vovresourced 139

vovresreq 102, 102

vovresSetFlags 110

VovScanClock 124

vovselect 82, 104, 104

vovserver 4, 7, 9, 44, 46, 68, 68, 110, 129, 139

164



VovServer 44

vovset 12, 123

vovsetupuser 16

vovsh 36, 111, 147

vovshow 33, 63

vovtasker 33, 68, 68, 70

vovtaskermgr 139

vovtaskers 82, 104

vovversion 16

vsz, cleaning 66

vtk_generic_get 111

vtk_jobclass_set_autoforget 36

vtk_jobclass_set_max_reschedule 38

vtk_prop_get 49, 147

vtk_prop_set 147

vtk_resourcemap_set 47, 110

vtk_server_config 111

vtk_time_pp 124

W

wait reasons 46

waiting, stopping, cleaning, debugging jobs 32

what happens when jobs are running 18

ww ccexec, wrapper 101

165


	Contents
	Altair Accelerator User Guide
	Use Accelerator Help
	Accelerator Quick Start
	Command Line Interface
	Quick Reference
	User Shell Setup
	Verify Your Setup

	Running a Job
	Submit Jobs
	Submit Jobs with CLI Commands
	nc run
	Default Output of nc run

	Submit a Single Job
	Submit Multiple Jobs
	Submit Jobs from the Browser

	View Job Progress and Results
	Submitted Job Information Display
	Get Job Information
	Get Detailed Information about a Job
	Graphical View of Job Progress and Results

	Manage Jobs
	Wait for Jobs
	nc wait

	Stop Jobs
	Forget Jobs
	nc forget

	Autoforget Jobs

	Rerun Jobs
	nc rerun


	Job Management
	Job Arrays
	Jobname Attribute
	Jobclasses
	Pre-Command and Post-Command Job Conditions

	Schedule Job Submission
	Queue Selection
	ncmgr start

	Scheduled Jobs
	nc why

	Priority
	Distributed Parallel Support
	Using Different Resources and Jobclasses
	OpenMPI Support

	Multiphase Support
	Job Submission Arguments

	Modify Running Jobs
	Interactive Jobs
	Modify Scheduled Jobs
	Restrictions and Consequences

	FairShare Groups
	Job Placement Policies
	Clean Up Log Files
	Debug Jobs without Running Accelerator
	Job Runtime - Monitor and Profile
	Job I/O Profiling

	Monitor the Workload
	List Jobs
	nc list

	Summary of All Jobs
	Notification of Job Status
	Invoke the GUI
	Icons
	Show the Hosts/Taskers
	Monitor Jobs, Taskers and Resources

	Statistical Information about Resources and Jobs
	Statistics
	Resource Statistics
	Resource Plots
	Job Resource Plots

	Environment Control
	Select a Named Environment
	Use Snapshot with Named Environment

	Job Resources
	Cross-platform Job Runs
	Accelerator and ClearCase: nc run -clearcase
	Request a License Before Executing Jobs
	NUMA Control and CPU Affinity
	CGROUPS for Jobs
	Use Containers for Jobs
	Match Jobs to Handles
	Resource/Handle Matching

	Advanced Information
	Set the Range for VovId
	Node Fields
	Formatting Strings
	Time Specifications
	Selection Rules
	Migrate from LSF

	Frequently Asked Questions and Troubleshooting Tips
	HPC Advice
	NVIDIA™ GPUs Support in Accelerator
	Simulation Scripts
	Sanity Check for vovserver
	Disable Regular User Login
	Auxiliary Group Membership
	Troubleshooting

	Deprecated Commands
	LSF Emulation

	Legal Notices
	Intellectual Property Rights Notice
	Technical Support

	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W


