RD-V: 0020 Cantilever Beam

Deflection of a cantilever beam modeled with different meshes and different element formulations.

1.


The subject of this study is to analyze the quality of Radioss quasi-linear simulation using a simple use case. This should give an overview about the trade-off between quality and performance with respect to different modeling techniques. This example deals with the use of the Radioss nonlinear solver.

Based on a well-known small example from literature, the set-up of a simple Radioss input deck for a linear-elastic application will be shown: the cantilever-beam.

The beam is clamped at one end, and loaded with a concentrated force on the other end. The maximum vertical deflection is used for results comparison. This problem is well understood, and results can be easily compared with an analytical solution.

In this example, different mesh techniques are compared: beams, 3 and 4 noded shells, hexahedral elements and tetrahedral (tetra4 and tetra10) elements, as well as different element sizes.

The results are extracted and compared between each other with respect to their mesh size and element formulation. As output, the maximum vertical deflection, number of cycles, calculation time, element stress, and overall error are used. The maximum vertical deflection is compared to the theoretical value.

Options and Keywords Used

  • /MAT/LAW1 (ELAST)
  • /PROP/TYPE1 (SHELL)
  • /PROP/TYPE3 (BEAM)
  • /PROP/TYPE14 (SOLID)
  • /TETRA4
  • /TETRA10
  • /BEAM
  • /BRICK
  • /SHELL
  • /SH3N
  • /CLOAD
  • /FUNCT_SMOOTH
  • Mesh density

Input Files

Before you begin, copy the file(s) used in this problem to your working directory.

モデル概要

この例は、シンプルな片持ち梁向けの各種モデリング手法を、品質とパフォーマンスの点で比較することを目的としています。

片持ち梁は左端で固定されており、右端には集中荷重がかけられています。
2. 端部に単一荷重がかけられた片持ち梁

fig_28-4
用いられた材料は線形弾性則(/MAT/LAW1)に従い、以下の特性を持ちます。
初期密度
7.8 x 10-9 [Mg/mm3]
ヤング率
210000 [MPa]
ポアソン比
0.3
板厚
10 [mm]
長さ
190 [mm]
10 [mm]
荷重ケース
Fx = 0
Fy = -1000.0
Fz = 0

この線形問題では、解析解で次の式が得られます:

w= F L 3 3EI MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Daiabg2 da9maalaaabaGaamOraiaadYeadaahaaWcbeqaaiaaiodaaaaakeaa caaIZaGaamyraiaadMeaaaaaaa@3CED@

ここで、
F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraaaa@36C1@
L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraaaa@36C1@
梁の長さ
E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraaaa@36C1@
ヤング率
I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraaaa@36C1@
慣性モーメント

理論的なたわみはw = 13.07mmと決定されます。

シミュレーションの反復

梁は6種類の要素でモデル化されています:
  • /BEAM
  • /SH3N
  • /SHELL
  • /BRICK
  • /TETRA4
  • /TETRA10
3. 異なるメッシュ


それぞれの定式化には特定のプロパティ(/PROP)があります。/PROP/TYPE3 (BEAM)は、ねじれ、曲げ、膜、または軸の変形のビームプロパティを記述します。ビーム要素では、デフォルトの非線形ひずみ定式化(Ismstr = 4)が使用されます。さらに、次の設定を行う必要があります。
断面積
100 mm2
慣性モーメント(曲げ)
833.33333 mm4
慣性モーメント(ねじれ)
1666.66666 mm4

シェル要素(/PROP/TYPE1 (SHELL))の場合、QBAT-shell(Ishell = 12)とQEPH-shell(Ishell = 24)という2つの要素定式化が使用されます。

3次元ソリッド要素(/PROP/TYPE14 (SOLID))の場合、Isolid = 14、17、18、24というソリッド定式化が調査されます。

Tetra4要素の場合、Itetra4 = 0、1、3という定式化が使用され、Tetra10要素の場合、Itetra10 = 0、2という定式化が使用されます。

変位が微小で、線形ソルバーを使用できても、非線形の陽解法および陰解法ソルバーが使用されます。非線形陰解法ソルバーをアクティブにするには、/IMPL/NONLINを使用します。

Results

The tables below provide an overview about maximum deflection in Z-direction compared to the theoretical result. The results are compared between each other with respect to their mesh size, total number of cycles, energy error and difference of deflection compared to the theoretical value. The explicit CPU costs are normalized with respect to the QEPH shell simulation running on a single CPU and should be considered approximate. For Implicit calculation the CPU costs are similar for all element types. The displacement results in the table are reported at the main node of the rigid body attached to the end of the beam where the force is applied.

Explicit Solver

1. Explicit Results of Deflection of a Cantilever Beam Modeled with Beams and Shell Elements
Element Mesh Size [mm] Element Formulation Maximum Deflection in Z-Direction [mm] CPU Cost Factor (vs QEPH Shells) Total Number of Cycles Difference to Theoretical value [%]
BEAM 10 BEAMN3 13.03 1.3 255801 0.3
5 13.03 0.3
SH3N 10 Ish3n=0,2 12.919 1.7 245758 1.2
5 12.981 0.7
SH3N 10 Ish3n=30 12.903 3.3 450006 1.3
5 12.923 1.1
QBAT 10 Ishell = 12

BATOZ

12.885 1.7 139698 1.4
5 12.946 0.9
QEPH 10 Ishell = 24

QEPH

12.975 1.0 137169 0.7
5 12.997 0.6
2. Explicit Results of Deflection of a Cantilever Beam Modeled with Tetra4 and Tetra10 Elements
Element Mesh Size [mm] Element Formulation Maximum Deflection in Z-Direction [mm] CPU Cost Factor (vs QEPH Shells) Total Number of Cycles Difference to Theoretical value [%]
TETRA4 10 Itetra4 = 0 3.633 8.1 344287 72.2
5 5.245 59.9
2.5 9.171 29.8
TETRA4 10 Itetra4 = 1 10.324 29.9 344277 21.0
5 11.231 14.1
2.5 12.452 4.7
TETRA4 10 Itetra4 = 3 5.259 8.9 344255 59.8
5 6.003 54.1
2.5 9.743 25.5
TETRA10 10 Itetra10 = 0 13.341 113.9 1301767 2.1
5 13.824 5.8
2.5 13.613 4.2
TETRA10 10 Itetra10 = 2 13.341 46.1 478817 2.3
5 13.824 5.8
2.5 13.613 4.2
3. Explicit Results of Deflection of a Cantilever Beam Modeled with Hexa8 Elements
Element Mesh Size [mm] Element Formulation Maximum Deflection in Z-Direction [mm] CPU Cost Factor (vs QEPH Shells) Total Number of Cycles Difference to Theoretical value [%]
BRICK 10 Isolid = 14 12.964 11.9 281572 0.8
5 12.890 1.4
2.5 12.939 1.0
BRICK 10 Isolid = 17 15.682 9.3 281584 20.0
5 9.910 24.2
2.5 11.985 8.3
BRICK 10 Isolid = 18 12.964 14.5 281572 0.8
5 12.890 1.4
2.5 12.939 1.0
BRICK 10 Isolid = 24

HEPH

12.966 4.1 281558 0.8
5 12.890 1.4
2.5 12.939 1.0

Implicit Solver

4. Implicit Results of Deflection of a Cantilever Beam Modeled with Beams and Shell Elements
Element Mesh Size [mm] Element Formulation Maximum Deflection in Z-Direction [mm] Total Number of Cycles Difference to Theoretical value [%]
BEAM 10 BEAMN3 13.032 12 0.3
5 13.032 0.3
SH3N 10 Ish3n=0 12.909 15 1.2
5 13.614 4.2
SHELL 10

Ishell = 12

BATOZ

12.951 15 0.9
5 12.975 0.7
SHELL 10 Ishell = 24

QEPH

12.958 13 0.9
5 12.976 0.7
5. Implicit Results of Deflection of a Cantilever Beam Modeled with Tetra4 and Tetra10 Elements
Element Mesh Size [mm] Element Formulation Maximum Deflection in Z-Direction [mm] Total Number of Cycles Difference to Theoretical value [%]
TETRA4 10 Itetra4 = 0 3.633 12 72.2
5 5.244 59.9
2.5 9.172 29.8
TETRA10 10 Itetra10 = 0 13.336 16 2.0
5 13.819 5.7
2.5 13.608 4.1
6. Implicit Results of Deflection of a Cantilever Beam Modeled with Hexa8 Elements
Element Mesh Size [mm] Element Formulation Maximum Deflection in Z-Direction [mm] Total Number of Cycles Difference to Theoretical value [%]
BRICK 10 Isolid = 14 12.965 15 0.8
5 12.890 1.4
2.5 12.939 1.0
BRICK 10 Isolid = 17 15.673 16 19.9
5 9.908 24.2
2.5 11.981 8.3
BRICK 10 Isolid = 18 12.964 18 0.8
5 12.890 1.4
2.5 12.939 1.0
BRICK 10 Isolid = 24

HEPH

12.966 15 0.8
5 12.890 1.4
2.5 12.939 1.0

Conclusion

Explicit Solver
Beam
BEAM3N returns good results for the coarse and the fine mesh. The difference of deflection compared to the theoretical value is about 0.2%.
Shells
When the beam is modeled with 4 node shell elements, QEPH (Ishell = 24) is the best choice of element formulation. Compared to QBAT (Ishell = 12), it returns similar results regarding mesh size, energy error, with very good precision versus cost.
Both 3 node shell element formulations, default (Ish3n = 0) and DKT18 (Ish3n = 30), return similar results, close to the theoretical value. Ish3n = 30 is almost twice as computationally expensive as Ish3n = 0.
Tetras
Itetra4 = 0 or 3 elements are too stiff and do not return reasonable results, unless a fine mesh is used. Although, having a higher computational cost, the Itetra4 = 1 element formulation returns better results especially when a fine mesh is used.
Tetra10 elements returns good results, but with a significantly higher calculation time compared to tetra4 elements. The Itetra10 = 2 formulation return the same results as the Itetra10 = 0 formulation, but with half the computational cost.
Bricks
Hexa8 elements with Isolid = 24 element formulation return the best results regarding mesh size, and calculation time. They also have very good precision versus cost ratio. The difference of deflection compared to the theoretical value is about 1%. Compared to the other brick element formulations calculation time is about 2 – 2.5 lower. When used with nonlinear materials, Isolid = 24 requires 3 or more elements through the thickness. For 1 or 2 elements through the thickness, a fully-integrated element, like Isolid = 14 or 18 is recommended. The Isolid = 18 element automatically selects the best property settings depending on the material it is used with. The fully-integrated Isolid = 17 element suffers from shear locking which causes it to be too stiff and therefore not recommended.
Implicit Solver
Beam
BEAM3N returns good results for the coarse and the fine mesh. The difference of deflection compared to the theoretical value is about 0.3%.
Shells
Shell elements with different element formulations return good results regarding mesh size and calculation time. The difference of deflection to the theoretical value is under 1%. The QEPH shell shows best performance versus precision ratio and is recommended.
The 3 node shell elements Ish3n = 0 returns results close to the theoretical value.
Tetras
Tetra10 elements return good results in terms of quality compared to tetra4 elements, which are too stiff in their behavior. The difference of deflection compared to the theoretical value varies between 2 to 6% and depends on the mesh size. For Tetra4 elements, the deflection compared to the theoretical value is to low, but begins to converge with finer mesh size. The Itetra4 = 1 and Itetra10 = 2 element formulations are not supported in implicit analysis.
Bricks
Hexa8 elements with different element formulations return good results for the coarse and the fine mesh, except for element formulation Isolid = 17 which suffers from shear locking. The difference of deflection compared to the theoretical value is about 1%. The Hexa8 elements with Isolid = 24 show the best performance regarding precision of results and calculation time.