/FAIL/RTCL
Block Format Keyword The RTCL (Rice-Tracey–Cockroft–Latham) criterion is a stress triaxiality-based failure model especially adapted to ductile failure.
The theory is based on voiding growth modeling. This failure model can be used for shell and solid elements.
Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/FAIL/RTCL/mat_ID/unit_ID | |||||||||
EPScal | Inst | n |
Optional line
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
fail_ID |
Definition
Field | Contents | SI Unit Example |
---|---|---|
mat_ID | Material identifier. (Integer, maximum 10 digits) |
|
unit_ID | (Optional) Unit
identifier. (Integer, maximum 10 digits) |
|
EPScal | Calibrated simple tension failure
strain
(for a reference mesh size of
if the
regularization is activated for shells). (Real) |
|
Inst | Flag to activate damage
regularization for shells.
(Integer) |
|
n | Hardening exponent for shell damage
regularization. (Real) |
|
fail_ID | (Optional) Failure criteria
identifier. (Integer, maximum 10 digits) |
Example (Aluminum)
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat and failure
# MUNIT LUNIT TUNIT
Mg mm s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 1. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/PLAS_JOHNS/1/1
Aluminum
# RHO_I
2.7E-9 0
# E Nu Iflag
70000 .3 0
# a b n EPS_p_max SIG_max0
90 200 .3 0 0
# c EPS_DOT_0 ICC Fsmooth F_cut Chard
0 0 0 0 0 0
# m T_melt rhoC_p T_r
0 0 0 0
/FAIL/RTCL/1/1
# EPScal Inst n
.2 0 .67
# fail_ID
1
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#enddata
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
Comments
- The factor is computed
according to stress triaxiality as:Where,
- Stress triaxiality defined as
- Mean stress
- von Mises equivalent stress
- Cumulated plastic strain.
- Plastic strain at failure in simple tension.
- A factor whose computation is defined below.
- The factor is computed
according to stress triaxiality
as:
- The plastic strain at
failure
for solid elements.
However, two cases can be encountered for shell elements:
- If :
- If
:
Where,
- Hardening exponent (assuming a power type hardening: )
- Shell initial thickness
- Square root of the shell area.
This last formula allows necking instability for shells to be considered and to regularize the results.Note: The calibrated value is encountered when .
- Damage can be post-processed in the animation files using the output request DAMA. For shell elements, when an integration point reaches D=1, the integration points stress tensor is set to zero. The element fails and is deleted when the ratio of through thickness failed integration points equals P_thickfail defined in the shell properties. In solid elements, the element is deleted when any integration point reaches D=1.
- The fail_ID is used for the failure initialization in the element using the keyword /INISHE/FAIL, /INISH3/FAIL or /INIBRI/FAIL. These values can be written in the .sta file with /STATE/SHELL/FAIL or /STATE/BRICK/FAIL options.