/FAIL/RTCL
Block Format Keyword The RTCL (Rice-Tracey–Cockroft–Latham) criterion is a stress triaxiality-based failure model especially adapted to ductile failure.
The theory is based on voiding growth modeling. This failure model can be used for shell and solid elements.
Format
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | 
|---|---|---|---|---|---|---|---|---|---|
| /FAIL/RTCL/mat_ID/unit_ID | |||||||||
| EPScal | Inst | n | |||||||
Optional line
        | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | 
|---|---|---|---|---|---|---|---|---|---|
| fail_ID | 
Definition
| Field | Contents | SI Unit Example | 
|---|---|---|
| mat_ID | Material identifier. (Integer, maximum 10 digits) | |
| unit_ID | (Optional) Unit
                                        identifier. (Integer, maximum 10 digits) | |
| EPScal | Calibrated simple tension failure
                                    strain 
                                            
                                         (for a reference mesh size of
                                    
                                     if the
                                    regularization is activated for shells). (Real) | |
| Inst | Flag to activate damage
                                    regularization for shells. 
 (Integer) | |
| n | Hardening exponent for shell damage
                                        regularization. (Real) | |
| fail_ID | (Optional) Failure criteria
                                        identifier. (Integer, maximum 10 digits) | 
Example (Aluminum)
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat and failure
#              MUNIT               LUNIT               TUNIT
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  1. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/PLAS_JOHNS/1/1
Aluminum
#              RHO_I
              2.7E-9                   0
#                  E                  Nu     Iflag
               70000                  .3         0
#                  a                   b                   n           EPS_p_max            SIG_max0
                  90                 200                  .3                   0                   0
#                  c           EPS_DOT_0       ICC   Fsmooth               F_cut               Chard
                   0                   0         0         0                   0                   0
#                  m              T_melt              rhoC_p                 T_r
                   0                   0                   0                   0
/FAIL/RTCL/1/1
#             EPScal      Inst                   n         
                  .2         0                 .67                   
#  fail_ID
         1
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#enddata
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|Comments
- The factor is computed
                        according to stress triaxiality as:Where,
- Stress triaxiality defined as 
                                                
                                            
- Mean stress
- von Mises equivalent stress
 
- Cumulated plastic strain.
- Plastic strain at failure in simple tension.
- A factor whose computation is defined below.
 
- The factor is computed
                        according to stress triaxiality
                        as:
- The plastic strain at
                        failure 
                         for solid elements.
                        However, two cases can be encountered for shell elements: - If :
- If 
                                        
                                    : 
                                        
                                    Where,
- Hardening exponent (assuming a power type hardening: )
- Shell initial thickness
- Square root of the shell area.
 This last formula allows necking instability for shells to be considered and to regularize the results.Note: The calibrated value is encountered when .
 
- Damage can be post-processed in the animation files using the output request DAMA. For shell elements, when an integration point reaches D=1, the integration points stress tensor is set to zero. The element fails and is deleted when the ratio of through thickness failed integration points equals P_thickfail defined in the shell properties. In solid elements, the element is deleted when any integration point reaches D=1.
- The fail_ID is used for the failure initialization in the element using the keyword /INISHE/FAIL, /INISH3/FAIL or /INIBRI/FAIL. These values can be written in the .sta file with /STATE/SHELL/FAIL or /STATE/BRICK/FAIL options.