Appendix A: Basic Relations of Elasticity
Isotropic Material
Hooke Law 3D (Principal Stress and Strain)
{σ}=[D]{ε} σ1=D11ε1+D12ε2+D13ε3 σ1=(λ+2μ)ε1+λ(ε2+ε3) σ1=λ(ε1+ε2+ε3)+2με1 σ1=Kεkk+2μe1 with εkk=(ε1+ε2+ε3)and e1=ε1−1/3(ε1+ε2+ε3){σ}=[D]{ε} ; [D]=E(1+ν)(1−2ν)[1−ννν0001−νν0001−ν0001−2ν200Symm.1−2ν201−2ν2]{ε}=[C]{σ} ; [C]=[1E−νE−νE0001E−νE0001E0002(1+ν)E00Symm.2(1+ν)E02(1+ν)E]
Hooke Law for 2D Plan Stress
{σ}=[H]{ε}
σ1=H11ε1+H12ε2
{σ}=[H]{ε} ; [H]=E1−ν2[1ν000ν1000001−ν2000001−ν2000001−ν2]
{ε}=[C]{σ} ; [C]=1E[1−ν000−ν1000002(1+ν)000002(1+ν)000002(1+ν)]
Hooke Law for 2D Plane Strain
{σ}=[H]{ε} ; [H]=E(1+ν)(1−2ν)[1−νν0ν1−ν0001−2ν2]
{ε}=[C]{σ} ; [C]=1+νE[1−ν−ν0−ν1−ν0002]
E, ν | E,G | E,B | G, ν | G, B | B, ν | λ,μ | |
---|---|---|---|---|---|---|---|
E | E | E | E | 2(1+v)G | 9BG3B+G | 3(1-2v)B | (3λ+2μ)μλ+μ |
G=μ | E2(1+v) | G | 3EB9B−E | G | G | 3(1−2v)B2(1+v) | μ |
B=K | E3(1−2v) | EG9G−3E | B | 2(1+v)G3(1−2v) | B | B | 3λ+2μ3 |
ν | ν | E−2G2G | 3B−E6B | ν | 3B−2G6B+2G | ν | λ2(λ+μ) |
λ | Ev(1+v)(1−2v) | (E−2G)G3G−E | (3B−E)3B9B−E | 2Gv1−2v | 3B−2G3 | 3Bv(1+v) | λ |
Orthotropic Material
General 3D Orthotropic Case
- Three Young's modulus in orthotropic directions 1, 2 and 3: E1 , E2 , E3
- Three shear modulus in planes 12, 13 and 23: G12 , G13 , G23
- Three Poisson ratio's satisfying the relations:
ν12E1=ν21E2 ; ν13E1=ν31E3 ; ν23E2=ν32E3
1−ν12ν21>0 ; 1−ν13ν31>0 ; 1−ν23ν32>0
1−ν12ν21−ν13ν31−ν23ν32−ν12ν23ν31−ν21ν13ν32>0
{ε}=[C]{σ} ; [C]=[1E1−ν21E2−ν31E3000−ν12E11E2−ν32E000−ν13E1−ν23E21E30000001G120000001G130000001G23]
2D In-plane Orthotropic Material
- Orthotropic plane 1-2, isotropic plane 2-3
- Orthotropy coefficients in the plane 1-2: E1, E2, ν12, G12
- Isotropy coefficients in plane 2-3: E2, ν
- Five independent coefficients
{ε}=[C]{σ} ; [C]=[1E1−ν12E1−ν12E1000−ν12E11E2−νE2000−ν12E1−νE21E20000001G120000001G120000002(1+ν)E2]
Stiffness Matrix of Beam Element
Terms of the stiffness matrix:
[k]=[EAL00000−K110000012EI3L3(1+ϕ2)000L2K220−K22000K2612EI2L3(1+ϕ2)0−L2K33000−K330K350GJL00000−K4400(4+ϕ3)EI2L(1+ϕ3)000−K3502−ϕ34+ϕ3K550(4+ϕ2)EI3L(1+ϕ2)0−K260002−ϕ24+ϕ2K66K1100000K22000−K26Symm.K330−K350K4400K550K66]
For a rectangle cross-section:
ϕ2=144(1+ν)I35AL2
ϕ3=144(1+ν)I25AL2
I=bh312