Appendix A: Basic Relations of Elasticity

Isotropic Material

Hooke Law 3D (Principal Stress and Strain)

{σ}=[D]{ε}σ1=D11ε1+D12ε2+D13ε3σ1=(λ+2μ)ε1+λ(ε2+ε3)σ1=λ(ε1+ε2+ε3)+2με1σ1=Kεkk+2μe1with εkk=(ε1+ε2+ε3)and e1=ε11/3(ε1+ε2+ε3){σ}=[D]{ε};[D]=E(1+ν)(12ν)[1ννν0001νν0001ν00012ν200Symm.12ν2012ν2]{ε}=[C]{σ};[C]=[1EνEνE0001EνE0001E0002(1+ν)E00Symm.2(1+ν)E02(1+ν)E]

Hooke Law for 2D Plan Stress

{σ}=[H]{ε}

σ1=H11ε1+H12ε2

{σ}=[H]{ε} ; [H]=E1ν2[1ν000ν1000001ν2000001ν2000001ν2]

{ε}=[C]{σ} ; [C]=1E[1ν000ν1000002(1+ν)000002(1+ν)000002(1+ν)]

Hooke Law for 2D Plane Strain

{σ}=[H]{ε} ; [H]=E(1+ν)(12ν)[1νν0ν1ν00012ν2]

{ε}=[C]{σ} ; [C]=1+νE[1νν0ν1ν0002]

Table 1. Material Constants Relations
E, ν E,G E,B G, ν G, B B, ν λ,μ
E E E E 2(1+v)G 9BG3B+G 3(1-2v)B (3λ+2μ)μλ+μ
G=μ E2(1+v) G 3EB9BE G G 3(12v)B2(1+v) μ
B=K E3(12v) EG9G3E B 2(1+v)G3(12v) B B 3λ+2μ3
ν ν E2G2G 3BE6B ν 3B2G6B+2G ν λ2(λ+μ)
λ Ev(1+v)(12v) (E2G)G3GE (3BE)3B9BE 2Gv12v 3B2G3 3Bv(1+v) λ

Orthotropic Material

General 3D Orthotropic Case

The strain-stress relations are defined using 9 material constants:
  • Three Young's modulus in orthotropic directions 1, 2 and 3: E1 , E2 , E3
  • Three shear modulus in planes 12, 13 and 23: G12 , G13 , G23
  • Three Poisson ratio's satisfying the relations:

    ν12E1=ν21E2;ν13E1=ν31E3;ν23E2=ν32E3

    1ν12ν21>0 ; 1ν13ν31>0 ; 1ν23ν32>0

    1ν12ν21ν13ν31ν23ν32ν12ν23ν31ν21ν13ν32>0

    {ε}=[C]{σ} ; [C]=[1E1ν21E2ν31E3000ν12E11E2ν32E000ν13E1ν23E21E30000001G120000001G130000001G23]

2D In-plane Orthotropic Material

  • Orthotropic plane 1-2, isotropic plane 2-3
    • Orthotropy coefficients in the plane 1-2: E1,E2,ν12,G12
    • Isotropy coefficients in plane 2-3: E2,ν
  • Five independent coefficients

    {ε}=[C]{σ} ; [C]=[1E1ν12E1ν12E1000ν12E11E2νE2000ν12E1νE21E20000001G120000001G120000002(1+ν)E2]

Stiffness Matrix of Beam Element

Terms of the stiffness matrix:

[k]=[EAL00000K110000012EI3L3(1+ϕ2)000L2K220K22000K2612EI2L3(1+ϕ2)0L2K33000K330K350GJL00000K4400(4+ϕ3)EI2L(1+ϕ3)000K3502ϕ34+ϕ3K550(4+ϕ2)EI3L(1+ϕ2)0K260002ϕ24+ϕ2K66K1100000K22000K26Symm.K330K350K4400K550K66]

For a rectangle cross-section:

ϕ2=144(1+ν)I35AL2

ϕ3=144(1+ν)I25AL2

I=bh312