/MAT/LAW66
Block Format Keyword This law models an isotropic tension-compression elasto-plastic material law using user-defined functions for the work-hardening portion of the stress-strain (plastic strain versus stress). This law can be defined for compression and tension.
Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/MAT/LAW66/mat_ID/unit_ID | |||||||||
mat_title | |||||||||
E | Chard | Fcut | Fsmooth | Iyld_rate | |||||
Pc | Pt | Ec | RPCT |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
fct_IDc | fct_IDt | Fscalec | Fscalet | ||||||
c | VP |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
fct_IDc | fct_IDt | Fscalec | Fscalet | ||||||
Frate_IDc | Frate_IDt | Fscale_ratec | Fscale_ratet |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
NFUNCC | NFUNCT |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
fct_IDc | Fscalec |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
fct_IDt | Fscalet |
Definition
Field | Contents | SI Unit Example |
---|---|---|
mat_ID | Material identifier. (Integer, maximum 10 digits) |
|
unit_ID | Unit identifier. (Integer, maximum 10 digits) |
|
mat_title | Material title. (Character, maximum 100 characters) |
|
Initial density. (Real) |
||
E | Young's modulus. (Real) |
|
Poisson's ratio. (Real) |
||
Chard | Hardening coefficient.
(Real) |
|
Fsmooth | Smooth strain rate option flag.
(Integer) |
|
Fcut | Cutoff frequency for strain rate
filtering, Appendix: Filtering. Default = 1030 (Real) |
|
Iyld_rate | Rate effect on the yield stress flag.
(Integer) |
|
Pc | Limit pressure in compression. Default = 0 (Real) |
|
Pt | Limit pressure in tensile. Default = 0 (Real) |
|
Ec | (Optional) Compression Young’s modulus.
2 (Real) |
|
RPCT | Scale factor used on
Pc and
Pt. 2 (Real) |
|
fct_IDc | Compression yield
stress. (Integer) |
|
fct_IDt | Tension yield
stress. (Integer) |
|
Fscalec | Scale factor for ordinate (stress) in
fct_IDc. Default = 1.0 (Real) |
|
Fscalet | Scale factor for ordinate (stress) in
fct_IDt. Default = 1.0 (Real) |
|
c | Strain rate
parameter. (Real) |
|
Reference strain rate. Default = 1.0 (Real) |
||
Initial yield stress. Default = 0 (Real) |
||
VP | Strain rate choice flag.
(Integer) |
|
Frate_IDc | Compression strain rate effect function
identifier. (Integer) |
|
Frate_IDt | Tension strain rate effect function
identifier. (Integer) |
|
Fscale_ratec | Scale factor for ordinate (stress) in
Frate_IDc. Default = 1.0 (Real) |
|
Fscale_ratet | Scale factor for ordinate (stress) in
Frate_IDt. Default = 1.0 (Real) |
|
NFUNCC | Number of compression
function. (Integer) |
|
NFUNCT | Number of tension
function. (Integer) |
|
ith
compression strain rate i
=1,NFUNCC. (Real) |
||
ith
tension strain rate
i=1,NFUNCT. (Real) |
Example (Aluminum)
#RADIOSS STARTER
/UNIT/1
unit for mat
g mm ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW66/1/1
Aluminum
# RHO_I
.0027
# E Nu C_hard F_cut F_smooth Iyld_rate
60400 .33 0 0 0 4
# P_c P_t
500 600
# NFUNCC NFUNCT
2 2
#funct_IDc Epsilon_c Fscalec
38 10 1
40 40 1.6
#funct_IDt Epsilon_t Fscalet
38 10 1
40 40 1.6
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 3. FUNCTIONS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/38
function_38
# X Y
0 90
.08 170
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/40
function_40
# X Y
0 90
.08 170
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
Example (Optional Compression Young’s Modulus)
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
## Material Law
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW66/1
20MAT124_20degree
# RHO_I
1.25000000000000E-09
# E Nu C_hard F_cut F_smooth Iyld_rate
210000.0 0.33 0.0 0.0 0 1
# P_c P_t EC RPCT
0.0 0.0 70000.
#funct_IDc funct_IDt Fscalec Fscalet
34 34 100.0 200.0
# Epsilon_0 c Sigma_Y0 VP
0.0 0.0 0.0 0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
##HWCOLOR curves 24 9
/FUNCT/24
20deg_TENSION
# X Y
0.0 0.200535124
1.11148000000000E-04 0.23893938
2.47763000000000E-04 0.274602617
3.84248000000000E-04 0.308164207
5.81974000000000E-04 0.354639794
7.98180000000000E-04 0.395218545
1.03131900000000E-03 0.43242102
0.001382833 0.473801266
0.001747862 0.508073173
0.002139804 0.539268776
0.002704889 0.577068218
0.003299031 0.610692299
0.004078009 0.646563755
0.005715537 0.702190108
1.0 0.75
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/34
20deg_COMPRESSION
# X Y
0.0 0.709520996
0.002556758 0.768542475
0.005112572 0.814793042
0.007700089 0.850991269
0.010231756 0.877769462
0.012846771 0.896395146
0.015380438 0.909432849
0.020500175 0.924867455
0.030979299 0.948100519
0.073545677 1.001804424
0.126630132 1.075808748
0.245056814 1.17707424
1.0 1.2
#enddata
Comments
- This is an
isotropic elastic-plastic law. The yield stress is defined by using the compression and
tension yield stress versus effective plastic strain for the both (compression and tension).
When exceeded, the two pressures Pt and
Pc, determine if the tension yield stress
or compression yield stress is used respectively.
If the pressure is between these two values, the yield stress is given by:
If
If , or the pressure is out of the two values range, the yield stress is given by:
if
if
- If Ec is defined, the
Young's modulus is defined as:
- Young’s modulus is E, if P > -RPCT * Pt
- Young’s modulus is Ec, if P < RPCT * Pc
- Linear interpolation is done between E and Ec, if -RPCT * Pt < P < RPCT * Pc
- Yield stress is computed as:
If VP= 1:
if
if
If VP= 0:
if
if
with being static yield stress and being initial yield stress.
- /VISC/PRONY can be used with this material law to include viscous effects.