RD-E: 1701 Densities
A steel box beam, fixed at one end and impacted at the other end by an infinite mass. Results for mesh with different densities are compared.
A steel box beam fixed at one end, is impacted at the other end by an infinite mass. The dimensions of the box beam are 203 mm x 50.8 mm x 38.1 mm, and its thickness is 0.914 mm. As symmetry is taken into account, only one quarter of the structure is modeled.
Options and Keywords Used
- Shells Q4
- Interfaces (/INTER/TYPE7 and /INTER/TYPE11)
The structure's self-impact is modeled using a TYPE7 interface on the full structure. The interface main surface is defined using the complete model. The secondary nodes group is defined using the main surface.
On top of the beam, possible edge-to-edge impacts are dealt with using a TYPE11 self-impacting interface. The edges use the main surface of the TYPE7 interface as the input surface. - Global plasticity, iterative plasticity, and variable thickness
- BT_TYPE1, 3, 4, QEPH, BATOZ, DKT18 and C0 formulation
- Boundary conditions (/BCS)
Take into account the symmetry, all nodes in the Y-Z plan are fixed in a Y translation and an X and Z rotation. One quarter of the structure is modeled.
- Rigid wall (/RWALL)
The impactor is modeled using a sliding rigid wall having a fixed velocity (13.3 m/s) in a Z direction and is fixed for other translations and rotations.
- Imposed velocity (/IMPVEL)
- Rigid body (/RBODY)
The lower (fixed) end is modeled using a rigid body connecting all lower nodes (Z = 0.0). The rigid body is completely fixed using translations and rotations.
Input Files
Model Description
Units: mm, ms, g, N, MPa
- Material Properties
- Value
- Initial density
- 7.8 x 10-3
- Young's modulus
- 210000
- Poisson ratio
- 0.3
- Yield stress
- 206
- Hardening parameter
- 450
- Hardening exponent
- 0.5
- Maximum stress
- 340
Model Method
Four kinds of meshes are used to model the beam. The initial mesh is uniform using a total of 60 x 8 elements. For the three other meshes, the element length is multiplied by 2, 3 and 4, as shown in Figure 3.
- BT_TYPE1
- BT_TYPE3
- BT_TYPE4
- QEPH
- BATOZ
- C0 (T3 element)
- DKT18 (T3 element)
The 3-node shell mesh is obtained by dividing the 4-node shell elements.
Results
- Role and influence of the mesh for a given type of element formulation
- The shell element formulations for a given mesh
- Crushing force versus displacement
The crushing force corresponds to normal force in the Z-direction of the impactor (rigid wall), multiplied by 4 due to the symmetry.
In comparison, the displacement corresponds to the Z-direction motion of the rigid wall's main node.
- Hourglass energy
- Total energy
Total energy is the sum of all energies.
Mesh Influence of a Given Shell
Influence of Element Formulation using Mesh 3
MESH 0 | MESH 1 | MESH 2 | MESH 3 | |
---|---|---|---|---|
EI t = 8 ms |
3.25 x 105 | 3.82 x 105 | 4.88 x 105 | 7.23 x 105 |
Ehr t = 8 ms |
- | - | - | - |
EK t = 8 ms |
1.32 x 104 | 1.23 x 104 | 1.26 x 104 | 1.10 x 104 |
Total Energy | 3.38 x 105 | 3.94 x 105 | 5.00 x 105 | 7.34 x 105 |
Error t = 8 ms |
0.3% | 1.1% | 1.6% | 2.9% |
Maximum normal force on the wall (N) | 10350 | 10491 | 10953 | 11555 |
MESH 0 | MESH 1 | MESH 2 | MESH 3 | |
---|---|---|---|---|
EI t = 8 ms |
3.38 x 105 | 4.55 x 105 | 5.49 x 105 | 8.13 x 105 |
Ehr t = 8 ms |
- | - | - | - |
EK t = 8 ms |
1.32 x 104 | 1.36 x 104 | 1.35 x 104 | 0.93 x 104 |
Total Energy | 3.51 x 105 | 4.68 x 105 | 5.63 x 105 | 8.23 x 105 |
Error t = 8 ms |
2.0% | 2.9% | 3.2% | 8.0% |
Maximum normal force on the wall (N) | 10345 | 10574 | 11335 | 11865 |
MESH 0 | MESH 1 | MESH 2 | MESH 3 | |
---|---|---|---|---|
EI t = 8 ms |
3.19 x 105 | 3.60 x 105 | 4.68 x 105 | 5.19 x 105 |
Ehr t = 8 ms |
2.42 x 104 | 4.17 x 104 | 3.87 x 104 | 8.80 x 104 |
EK t = 8 ms |
1.29 x 104 | 1.23 x 104 | 1.16 x 104 | 1.35 x 104 |
Total Energy | 3.32 x 105 | 3.72 x 105 | 4.79 x 105 | 5.32 x 105 |
Error t = 8 ms |
-6.4% | -9.3% | -5.8% | 11.5% |
Maximum normal force on the wall (N) | 10344 | 10505 | 10971 | 11569 |
MESH 0 | MESH 1 | MESH 2 | MESH 3 | |
---|---|---|---|---|
EI t = 8 ms |
3.14 x 105 | 3.73 x 105 | 4.46 x 105 | 4.94 x 105 |
Ehr t = 8 ms |
2.02 x 104 | 3.80 x 104 | 6.56 x 104 | 11.90 x 104 |
EK t = 8 ms |
1.31 x 104 | 1.24 x 104 | 1.32 x 104 | 1.29 x 104 |
Total Energy | 3.27 x 105 | 3.85 x 105 | 4.60 x 105 | 5.07 x 105 |
Error t = 8 ms |
-5.5% | -8.2% | -11.0% | -16.7% |
Maximum normal force on the wall (N) | 10353 | 10526 | 11000 | 11670 |
MESH 0 | MESH 1 | MESH 2 | MESH 3 | |
---|---|---|---|---|
EI t = 8 ms |
3.23 x 105 | 3.52 x 105 | 4.60 x 105 | 5.26 x 105 |
Ehr t = 8 ms |
1.26 x 104 | 1.94 x 104 | 3.74 x 104 | 5.02 x 104 |
EK t = 8 ms |
1.30 x 104 | 1.24 x 104 | 1.21 x 104 | 1.31 x 104 |
Total Energy | 3.36 x 105 | 3.64 x 105 | 4.72 x 105 | 5.39 x 105 |
Error t = 8 ms |
-3.3% | -4.0% | -5.8% | -6.5% |
Maximum normal force on the wall (N) | 10344 | 10538 | 11011 | 11568 |
MESH 0 | MESH 1 | MESH 2 | MESH 3 | |
---|---|---|---|---|
EI t = 8 ms |
3.45 x 105 | 4.56 x 105 | 4.79 x 105 | 8.64 x 105 |
Ehr t = 8 ms |
- | - | - | - |
EK t = 8 ms |
1.29 x 104 | 1.30 x 104 | 1.10 x 104 | 1.12 x 104 |
Total Energy | 3.58 x 105 | 4.69 x 105 | 4.90 x 105 | 8.75 x 105 |
Error t = 8 ms |
0.2% | 0.8% | 1.7% | 2.5% |
Maximum normal force on the wall (N) | 10355 | 10344 | 10875 | 11435 |
MESH 0 | MESH 1 | MESH 2 | MESH 3 | |
---|---|---|---|---|
EI t = 8 ms |
3.21 x 105 | 3.75 x 105 | 3.97 x 105 | 4.32 x 105 |
Ehr t = 8 ms |
- | - | - | - |
EK t = 8 ms |
1.29 x 104 | 1.34 x 104 | 1.13 x 104 | 1.45 x 104 |
Total Energy | 3.34 x 105 | 3.88 x 105 | 4.08 x 105 | 4.47 x 105 |
Error t = 8 ms |
0.5% | 0.8% | 1.6% | 1.9% |
Maximum normal force on the wall (N) | 10348 | 10367 | 10800 | 11139 |