/MAT/LAW124 (CDPM2)

Blockフォーマットキーワード 塑性、損傷、ひずみ速度効果を考慮したコンクリート材料則。

引張によるメッシュサイズ依存を避けるために、Hillerborg正則化法も利用できます。使用しやすいよう、この材料則は少ないパラメータで設定することができます。
注: この材料は現時点ではベータリリース状態であり、開発は継続中です。

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW124/mat_ID/unit_IDまたはMAT/CDPM2/mat_ID/unit_ID
mat_title
ρ i
E ν MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugybiabe2 7aUbaa@39F3@ IDEL IRATE FCUT
ECC Q h0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugybiaadg fakmaaBaaaleaacaWGObGaaGimaaqabaaaaa@3AEE@ f t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugybiaadA gakmaaBaaaleaajugybiaadshaaSqabaaaaa@3B2F@ f c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugybiaadA gakmaaBaaaleaajugybiaadshaaSqabaaaaa@3B2F@ HP
AH BH CH DH
AS BS DF DFLAG DTYPE IREG
WF WF1 FT1 EFC

定義

フィールド 内容 SI単位の例
mat_ID 材料識別子

(整数、最大10桁)

unit_ID (オプション)単位の識別子。

(整数、最大10桁)

mat_title 材料のタイトル

(文字、最大100文字)

ρ i 初期密度

(実数)

[ kg m 3 ]
E ヤング率

(実数)

[ Pa ]
ν MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugybiabe2 7aUbaa@39F3@ ポアソン比。

(実数)

IDEL 要素削除フラグ。
=1(デフォルト)
非アクティブ。
= 2
アクティブ

(整数)

IRATE 速度依存フラグ。
=1(デフォルト)
非アクティブ。
= 2
アクティブ

(整数)

FCUT ひずみ速度フィルタリング周波数。

デフォルト= 10 kHz(実数)

[Hz]
ECC 偏心量。

デフォルト: コメント6(実数)

Q h 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugybiaadg fakmaaBaaaleaacaWGObGaaGimaaqabaaaaa@3AEE@ 初期硬化。

デフォルト = 0.3(実数)

f t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugybiaadA gakmaaBaaaleaajugybiaadshaaSqabaaaaa@3B2F@ 引張時の強度限界。

(実数)

[ Pa ]
f c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugybiaadA gakmaaBaaaleaajugybiaadshaaSqabaaaaa@3B2F@ 圧縮時の強度限界。

(実数)

[ Pa ]
HP 硬化係数。

(実数)

AH 圧縮損傷 第1 延性パラメータ。

デフォルト = 0.08(実数)

BH 圧縮損傷 第2 延性パラメータ。

デフォルト = 0.003(実数)

CH 圧縮損傷 第3 延性パラメータ。

デフォルト = 2.0(実数)

DH 圧縮損傷 第4 延性パラメータ。

デフォルト = 1.0E-6(実数)

AS 第1延性測定パラメータ4

デフォルト = 15.0(実数)

BS 第2延性測定パラメータ。

デフォルト = 1.0(実数)

DF 膨張係数。

デフォルト = 0.85(実数)

DFLAG 損傷モデルタイプ。
=1(デフォルト)
非対称損傷
= 2
等方性
= 3
乗算

(整数)

DTYPE 引張損傷形状。
= 1
線形
=2(デフォルト)
双線形
= 3
指数

(整数)

IREG 正規化フラグ。
= 1
非アクティブ
=2(デフォルト)
アクティブ

(整数)

WF 破壊時の引張非弾性変位/ひずみ。

次元はIREGパラメータ値に依存します。 4 7

(実数)

[ m ]
WF1 軟化曲線変化における引張弾性変位/ひずみ(双線形損傷のみ)。

次元はIREGパラメータ値に依存します。 4

デフォルト = 0.15*WF (実数)

[ m ]
FT1 WF1での引張強さ。

デフォルト = 0.3*FT (実数)

[ Pa ]
EFC 破壊に近い圧縮非弾性ひずみ。 8

デフォルト = 1.0E-4(実数)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW124/1/1
Concrete CDPM2
#        Init. dens.
              2.3E-9                  
#                  E                  NU                IDEL               IRATE                FCUT
               28000                0.19                   1                   2                   0
#                ECC                 QH0                  FT                  FC                  HP
                   0                   0                 3.5                33.6                 0.5
#                 AH                  BH                  CH                  DH
                   0                   0                   0                   0
#                 AS                  BS                  DF               DFLAG     DTYPE      Ireg
                   0                   0                   0                   1         1         1
#                 WF                 WF1                 FT1                 EFC     
               0.006                   0                   0              0.0005  
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#enddata
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

コメント

  1. CDPM2材料則は、いくつかの現象を考慮した使いやすいコンクリート材料則です。この構成モデルは少ないパラメータで設定が可能です。必要な物理パラメータは以下の通りです:
    E
    ヤング率
    ν MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4gaaa@37AB@
    ポアソン比
    f t
    引張強度
    f c
    圧縮強度
    G f t
    引張破壊エネルギー
    G f c
    (オプション)圧縮破壊エネルギー
  2. この法則では、弾性挙動は等方的であると仮定されています。塑性挙動は、次の降伏関数(図 1)で計算されます:
    f p = 1 q h 1 κ p ρ ¯ 6 f c + σ ¯ v f c 2 + 3 2 ρ ¯ f c 2 + m 0 q h 1 2 κ p q h 2 κ p ρ ¯ 6 f c r cos θ ¯ + σ ¯ v f c q h 1 2 κ p q h 2 2 κ p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGWbaabeaakiabg2da9maacmaabaWaamWaaeaacaaIXaGa eyOeI0IaamyCamaaBaaaleaacaWGObGaaGymaaqabaGcdaqadaqaai abeQ7aRnaaBaaaleaacaWGWbaabeaaaOGaayjkaiaawMcaaaGaay5w aiaaw2faamaabmaabaWaaSaaaeaacuaHbpGCgaqeaaqaamaakaaaba GaaGOnaaWcbeaakiaadAgadaWgaaWcbaGaam4yaaqabaaaaOGaey4k aSYaaSaaaeaacuaHdpWCgaqeamaaBaaaleaacaWG2baabeaaaOqaai aadAgadaWgaaWcbaGaam4yaaqabaaaaaGccaGLOaGaayzkaaWaaWba aSqabeaacaaIYaaaaOGaey4kaSYaaOaaaeaadaWcaaqaaiaaiodaae aacaaIYaaaaaWcbeaakmaalaaabaGafqyWdiNbaebaaeaacaWGMbWa aSbaaSqaaiaadogaaeqaaaaaaOGaay5Eaiaaw2haamaaCaaaleqaba GaaGOmaaaakiabgUcaRiaad2gadaWgaaWcbaGaaGimaaqabaGccaWG XbWaa0baaSqaaiaadIgacaaIXaaabaGaaGOmaaaakmaabmaabaGaeq OUdS2aaSbaaSqaaiaadchaaeqaaaGccaGLOaGaayzkaaGaamyCamaa BaaaleaacaWGObGaaGOmaaqabaGcdaqadaqaaiabeQ7aRnaaBaaale aacaWGWbaabeaaaOGaayjkaiaawMcaamaadmaabaWaaSaaaeaacuaH bpGCgaqeaaqaamaakaaabaGaaGOnaaWcbeaakiaadAgadaWgaaWcba Gaam4yaaqabaaaaOGaamOCamaabmaabaGaci4yaiaac+gacaGGZbGa fqiUdeNbaebaaiaawIcacaGLPaaacqGHRaWkdaWcaaqaaiqbeo8aZz aaraWaaSbaaSqaaiaadAhaaeqaaaGcbaGaamOzamaaBaaaleaacaWG JbaabeaaaaaakiaawUfacaGLDbaacqGHsislcaWGXbWaa0baaSqaai aadIgacaaIXaaabaGaaGOmaaaakmaabmaabaGaeqOUdS2aaSbaaSqa aiaadchaaeqaaaGccaGLOaGaayzkaaGaamyCamaaDaaaleaacaWGOb GaaGOmaaqaaiaaikdaaaGcdaqadaqaaiabeQ7aRnaaBaaaleaacaWG WbaabeaaaOGaayjkaiaawMcaaaaa@91A3@

    ここでは、応力空間におけるHaigh-Westergaard座標が考慮されています:

    σ ¯ v = tr ( σ ) 3 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbae badaWgaaWcbaGaamODaaqabaGccqGH9aqpdaWcaaqaaiaabshacaqG YbGaaiikaiaaho8acaGGPaaabaGaaG4maaaaaaa@3F67@ ρ ¯ = 2 J 2 = s : s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyWdiNbae bacqGH9aqpdaGcaaqaaiaaikdacaWGkbWaaSbaaSqaaiaaikdaaeqa aaqabaGccqGH9aqpdaGcaaqaaiaahohacaGG6aGaaC4CaaWcbeaaaa a@3F35@ θ ¯ = 1 3 arccos 3 3 2 J 3 J 2 3 / 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbae bacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIZaaaaiGacggacaGGYbGa ai4yaiaacogacaGGVbGaai4CamaabmaabaWaaSaaaeaacaaIZaWaaO aaaeaacaaIZaaaleqaaaGcbaGaaGOmaaaadaWcaaqaaiaadQeadaWg aaWcbaGaaG4maaqabaaakeaacaWGkbWaa0baaSqaaiaaikdaaeaaca aIZaGaai4laiaaikdaaaaaaaGccaGLOaGaayzkaaaaaa@4998@

    ここで、
    κ p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aaS baaSqaaiaadchaaeqaaaaa@38C6@
    硬化変数
    f c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGJbaabeaaaaa@37F2@
    圧縮での限界強度
    f t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGJbaabeaaaaa@37F2@
    引張での限界強度
    m 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa aaleaacaaIWaaabeaaaaa@37CB@
    偏心の影響を考慮したパラメータ e c c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaWGJbGaam4yaaqabaaaaa@38DA@
    m 0 = 3 f c 2 f t 2 f c f t e c c e c c + 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa aaleaacaaIWaaabeaakiabg2da9maalaaabaGaaG4mamaabmaabaGa amOzamaaDaaaleaacaWGJbaabaGaaGOmaaaakiabgkHiTiaadAgada qhaaWcbaGaamiDaaqaaiaaikdaaaaakiaawIcacaGLPaaaaeaacaWG MbWaaSbaaSqaaiaadogaaeqaaOGaamOzamaaBaaaleaacaWG0baabe aaaaGcdaWcaaqaaiaadwgadaWgaaWcbaGaam4yaiaadogaaeqaaaGc baGaamyzamaaBaaaleaacaWGJbGaam4yaaqabaGccqGHRaWkcaaIXa aaaaaa@4D6B@
    1. CDPM2モデルの降伏関数形状(Grasslより)


    q h 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaWGObGaaGymaaqabaaaaa@38BD@ q h 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaWGObGaaGymaaqabaaaaa@38BD@ は、(図 2)で定義される2つの硬化関数です。
    q h 1 κ p = q h 0 + 1 q h 0 κ p 3 3 κ p 2 + 2 κ p i f κ p < 1 1 i f κ p 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaWGObGaaGymaaqabaGcdaqadaqaaiabeQ7aRnaaBaaaleaa caWGWbaabeaaaOGaayjkaiaawMcaaiabg2da9maaceaabaqbaeqabi WaaaqaaiaadghadaWgaaWcbaGaamiAaiaaicdaaeqaaOGaey4kaSYa aeWaaeaacaaIXaGaeyOeI0IaamyCamaaBaaaleaacaWGObGaaGimaa qabaaakiaawIcacaGLPaaadaqadaqaaiabeQ7aRnaaDaaaleaacaWG WbaabaGaaG4maaaakiabgkHiTiaaiodacqaH6oWAdaqhaaWcbaGaam iCaaqaaiaaikdaaaGccqGHRaWkcaaIYaGaeqOUdS2aaSbaaSqaaiaa dchaaeqaaaGccaGLOaGaayzkaaaabaGaamyAaiaadAgaaeaacqaH6o WAdaWgaaWcbaGaamiCaaqabaGccqGH8aapcaaIXaaabaGaaGymaaqa aiaadMgacaWGMbaabaGaeqOUdS2aaSbaaSqaaiaadchaaeqaaOGaey yzImRaaGymaaaaaiaawUhaaaaa@6663@
    q h 2 κ p = 1 i f κ p < 1 1 + H p κ p 1 i f κ p 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaWGObGaaGOmaaqabaGcdaqadaqaaiabeQ7aRnaaBaaaleaa caWGWbaabeaaaOGaayjkaiaawMcaaiabg2da9maaceaabaqbaeqabi WaaaqaaiaaigdaaeaacaWGPbGaamOzaaqaaiabeQ7aRnaaBaaaleaa caWGWbaabeaakiabgYda8iaaigdaaeaacaaIXaGaey4kaSIaamisam aaBaaaleaacaWGWbaabeaakmaabmaabaGaeqOUdS2aaSbaaSqaaiaa dchaaeqaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaaqaaiaadMgaca WGMbaabaGaeqOUdS2aaSbaaSqaaiaadchaaeqaaOGaeyyzImRaaGym aaaaaiaawUhaaaaa@576B@
    2. 硬化関数形状(Grasslより)


    ここで、 q h 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaWGObGaaGimaaqabaaaaa@38BC@ は、 0 < q h 0 < 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgY da8iaadghadaWgaaWcbaGaamiAaiaaicdaaeqaaOGaeyipaWJaaGym aaaa@3C43@ となるように定義された初期硬化です。 H p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaWGWbaabeaaaaa@37E1@ は硬化係数で、推奨値は0.5です。内部変数 κ p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aaS baaSqaaiaadchaaeqaaaaa@38C6@ の変遷は以下の通り。

    引張と圧縮の間の偏差断面形状を特定するのにWilliam-Warnke関数が使用されます(図 1)。

    r cos θ ¯ = 4 1 e c c 2 cos 2 θ ¯ + 2 e c c 1 2 2 1 e c c 2 cos θ ¯ + 2 e c c 1 4 1 e c c 2 cos 2 θ ¯ + 5 e c c 2 4 e c c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaabm aabaGaci4yaiaac+gacaGGZbGafqiUdeNbaebaaiaawIcacaGLPaaa cqGH9aqpdaWcaaqaaiaaisdadaqadaqaaiaaigdacqGHsislcaWGLb Waa0baaSqaaiaadogacaWGJbaabaGaaGOmaaaaaOGaayjkaiaawMca aiGacogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaaaakiqbeI7aXz aaraGaey4kaSYaaeWaaeaacaaIYaGaamyzamaaBaaaleaacaWGJbGa am4yaaqabaGccqGHsislcaaIXaaacaGLOaGaayzkaaWaaWbaaSqabe aacaaIYaaaaaGcbaGaaGOmamaabmaabaGaaGymaiabgkHiTiaadwga daqhaaWcbaGaam4yaiaadogaaeaacaaIYaaaaaGccaGLOaGaayzkaa Gaci4yaiaac+gacaGGZbGafqiUdeNbaebacqGHRaWkdaqadaqaaiaa ikdacaWGLbWaaSbaaSqaaiaadogacaWGJbaabeaakiabgkHiTiaaig daaiaawIcacaGLPaaadaGcaaqaaiaaisdadaqadaqaaiaaigdacqGH sislcaWGLbWaa0baaSqaaiaadogacaWGJbaabaGaaGOmaaaaaOGaay jkaiaawMcaaiGacogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaaaa kiqbeI7aXzaaraGaey4kaSIaaGynaiaadwgadaqhaaWcbaGaam4yai aadogaaeaacaaIYaaaaOGaeyOeI0IaaGinaiaadwgadaWgaaWcbaGa am4yaiaadogaaeqaaaqabaaaaaaa@7F25@

  3. 塑性ひずみの変遷は、以下の式を用いた非関連塑性ポテンシャルによって定義されます:
    g p = 1 q h 1 κ p ρ ¯ 6 f c + σ ¯ v f c 2 + 3 2 ρ ¯ f c 2 + q h 1 2 κ p m 0 ρ ¯ 6 f c + m g f c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGWbaabeaakiabg2da9maacmaabaWaamWaaeaacaaIXaGa eyOeI0IaamyCamaaBaaaleaacaWGObGaaGymaaqabaGcdaqadaqaai abeQ7aRnaaBaaaleaacaWGWbaabeaaaOGaayjkaiaawMcaaaGaay5w aiaaw2faamaabmaabaWaaSaaaeaacuaHbpGCgaqeaaqaamaakaaaba GaaGOnaaWcbeaakiaadAgadaWgaaWcbaGaam4yaaqabaaaaOGaey4k aSYaaSaaaeaacuaHdpWCgaqeamaaBaaaleaacaWG2baabeaaaOqaai aadAgadaWgaaWcbaGaam4yaaqabaaaaaGccaGLOaGaayzkaaWaaWba aSqabeaacaaIYaaaaOGaey4kaSYaaOaaaeaadaWcaaqaaiaaiodaae aacaaIYaaaaaWcbeaakmaalaaabaGafqyWdiNbaebaaeaacaWGMbWa aSbaaSqaaiaadogaaeqaaaaaaOGaay5Eaiaaw2haamaaCaaaleqaba GaaGOmaaaakiabgUcaRiaadghadaqhaaWcbaGaamiAaiaaigdaaeaa caaIYaaaaOWaaeWaaeaacqaH6oWAdaWgaaWcbaGaamiCaaqabaaaki aawIcacaGLPaaadaWadaqaamaalaaabaGaamyBamaaBaaaleaacaaI Waaabeaakiqbeg8aYzaaraaabaWaaOaaaeaacaaI2aaaleqaaOGaam OzamaaBaaaleaacaWGJbaabeaaaaGccqGHRaWkdaWcaaqaaiaad2ga daWgaaWcbaGaam4zaaqabaaakeaacaWGMbWaaSbaaSqaaiaadogaae qaaaaaaOGaay5waiaaw2faaaaa@7174@

    ここで、

    m g = A g B g f c exp σ ¯ v q h 2 f t 3 B g f c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa aaleaacaWGNbaabeaakiabg2da9iaadgeadaWgaaWcbaGaam4zaaqa baGccaWGcbWaaSbaaSqaaiaadEgaaeqaaOGaamOzamaaBaaaleaaca WGJbaabeaakiGacwgacaGG4bGaaiiCamaalaaabaGafq4WdmNbaeba daWgaaWcbaGaamODaaqabaGccqGHsislcaWGXbWaaSbaaSqaaiaadI gacaaIYaaabeaakmaaliaabaGaamOzamaaBaaaleaacaWG0baabeaa aOqaaiaaiodaaaaabaGaamOqamaaBaaaleaacaWGNbaabeaakiaadA gadaWgaaWcbaGaam4yaaqabaaaaaaa@4F71@

    A g = 3 f t q h 2 f c + m 0 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGNbaabeaakiabg2da9maalaaabaGaaG4maiaadAgadaWg aaWcbaGaamiDaaqabaGccaWGXbWaaSbaaSqaaiaadIgacaaIYaaabe aaaOqaaiaadAgadaWgaaWcbaGaam4yaaqabaaaaOGaey4kaSYaaSaa aeaacaWGTbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaaGOmaaaaaaa@4437@

    B g = q h 2 3 1 + f t f c ln A g ln 2 D f 1 ln 3 q h 2 + m 0 2 + ln D f + 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaWGNbaabeaakiabg2da9maalaaabaWaaeWaaeaadaWccaqa aiaadghadaWgaaWcbaGaamiAaiaaikdaaeqaaaGcbaGaaG4maaaaai aawIcacaGLPaaadaqadaqaaiaaigdacqGHRaWkdaWccaqaaiaadAga daWgaaWcbaGaamiDaaqabaaakeaacaWGMbWaaSbaaSqaaiaadogaae qaaaaaaOGaayjkaiaawMcaaaqaaiGacYgacaGGUbGaamyqamaaBaaa leaacaWGNbaabeaakiabgkHiTiGacYgacaGGUbWaaeWaaeaacaaIYa GaamiramaaBaaaleaacaWGMbaabeaakiabgkHiTiaaigdaaiaawIca caGLPaaacqGHsislciGGSbGaaiOBamaabmaabaGaaG4maiaadghada WgaaWcbaGaamiAaiaaikdaaeqaaOGaey4kaSYaaSGaaeaacaWGTbWa aSbaaSqaaiaaicdaaeqaaaGcbaGaaGOmaaaaaiaawIcacaGLPaaacq GHRaWkciGGSbGaaiOBamaabmaabaGaamiramaaBaaaleaacaWGMbaa beaakiabgUcaRiaaigdaaiaawIcacaGLPaaaaaaaaa@6542@

    ここで、 D f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGMbaabeaaaaa@37D3@ は膨張パラメータ。

    この塑性ポテンシャルは、塑性ひずみテンソルの進展を計算するために使用されます。したがって内部変数 κ p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aaS baaSqaaiaadchaaeqaaaaa@38C6@ の進展は以下のようになります:

    κ ˙ p = ε ˙ p x h σ ¯ v 2 cos 2 θ ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqOUdSMbai aadaWgaaWcbaGaamiCaaqabaGccqGH9aqpdaWcaaqaamaafmaabaGa fqyTduMbaiaadaWgaaWcbaGaamiCaaqabaaakiaawMa7caGLkWoaae aacaWG4bWaaSbaaSqaaiaadIgaaeqaaOWaaeWaaeaacuaHdpWCgaqe amaaBaaaleaacaWG2baabeaaaOGaayjkaiaawMcaaaaadaqadaqaai aaikdaciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccuaH 4oqCgaqeaaGaayjkaiaawMcaaaaa@4E7F@

    ここで、 x h = A h A h B h exp R h σ ¯ v C h if R h σ ¯ v 0 E h exp R h σ ¯ v F h + D h if R h σ ¯ v < 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGObaabeaakiabg2da9maaceaabaqbaeqabiWaaaqaaiaa dgeadaWgaaWcbaGaamiAaaqabaGccqGHsisldaqadaqaaiaadgeada WgaaWcbaGaamiAaaqabaGccqGHsislcaWGcbWaaSbaaSqaaiaadIga aeqaaaGccaGLOaGaayzkaaGaciyzaiaacIhacaGGWbWaaeWaaeaada WccaqaaiabgkHiTiaadkfadaWgaaWcbaGaamiAaaqabaGcdaqadaqa aiqbeo8aZzaaraWaaSbaaSqaaiaadAhaaeqaaaGccaGLOaGaayzkaa aabaGaam4qamaaBaaaleaacaWGObaabeaaaaaakiaawIcacaGLPaaa aeaacaqGPbGaaeOzaaqaaiaadkfadaWgaaWcbaGaamiAaaqabaGcda qadaqaaiqbeo8aZzaaraWaaSbaaSqaaiaadAhaaeqaaaGccaGLOaGa ayzkaaGaeyyzImRaaGimaaqaaiaadweadaWgaaWcbaGaamiAaaqaba GcciGGLbGaaiiEaiaacchadaqadaqaamaaliaabaGaamOuamaaBaaa leaacaWGObaabeaakmaabmaabaGafq4WdmNbaebadaWgaaWcbaGaam ODaaqabaaakiaawIcacaGLPaaaaeaacaWGgbWaaSbaaSqaaiaadIga aeqaaaaaaOGaayjkaiaawMcaaiabgUcaRiaadseadaWgaaWcbaGaam iAaaqabaaakeaacaqGPbGaaeOzaaqaaiaadkfadaWgaaWcbaGaamiA aaqabaGcdaqadaqaaiqbeo8aZzaaraWaaSbaaSqaaiaadAhaaeqaaa GccaGLOaGaayzkaaGaeyipaWJaaGimaaaaaiaawUhaaaaa@77F6@

    ここで、 ε ˙ p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaacu aH1oqzgaGaamaaBaaaleaacaWGWbaabeaaaOGaayzcSlaawQa7aaaa @3BF5@ は塑性ひずみテンソルの増分のユークリッドノルムです。

  4. CDPM2モデルは、引張と圧縮の間で非対称な損傷進展を考慮します。これらの変数はそれぞれ ω t MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadshaaeqaaaaa@38E6@ ω c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadshaaeqaaaaa@38E6@ で示されます。損傷変数の変遷は、次のように定義されたひずみ基準によって引き起こされます:
    ε e q = ε 0 m 0 2 ρ ¯ 6 f c r cos θ ¯ + σ ¯ v f c + ε 0 2 m 0 2 4 ρ ¯ 6 f c r cos θ ¯ + σ ¯ v f c 2 + 3 ε 0 2 ρ ¯ 2 2 f c 2 ε 0 = f t E MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadwgacaWGXbaabeaakiabg2da9maalaaabaGaeqyTdu2a aSbaaSqaaiaaicdaaeqaaOGaamyBamaaBaaaleaacaaIWaaabeaaaO qaaiaaikdaaaWaaeWaaeaadaWcaaqaaiqbeg8aYzaaraaabaWaaOaa aeaacaaI2aaaleqaaOGaamOzamaaBaaaleaacaWGJbaabeaaaaGcca WGYbWaaeWaaeaaciGGJbGaai4BaiaacohacuaH4oqCgaqeaaGaayjk aiaawMcaaiabgUcaRmaalaaabaGafq4WdmNbaebadaWgaaWcbaGaam ODaaqabaaakeaacaWGMbWaaSbaaSqaaiaadogaaeqaaaaaaOGaayjk aiaawMcaaiabgUcaRmaakaaabaWaaSaaaeaacqaH1oqzdaqhaaWcba GaaGimaaqaaiaaikdaaaGccaWGTbWaa0baaSqaaiaaicdaaeaacaaI YaaaaaGcbaGaaGinaaaadaqadaqaamaalaaabaGafqyWdiNbaebaae aadaGcaaqaaiaaiAdaaSqabaGccaWGMbWaaSbaaSqaaiaadogaaeqa aaaakiaadkhadaqadaqaaiGacogacaGGVbGaai4CaiqbeI7aXzaara aacaGLOaGaayzkaaGaey4kaSYaaSaaaeaacuaHdpWCgaqeamaaBaaa leaacaWG2baabeaaaOqaaiaadAgadaWgaaWcbaGaam4yaaqabaaaaa GccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaSaa aeaacaaIZaGaeqyTdu2aa0baaSqaaiaaicdaaeaacaaIYaaaaOGafq yWdiNbaebadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGaamOzamaa DaaaleaacaWGJbaabaGaaGOmaaaaaaaabeaakiabgwMiZkabew7aLn aaBaaaleaacaaIWaaabeaakiabg2da9maalaaabaGaamOzamaaBaaa leaacaWG0baabeaaaOqaaiaadweaaaaaaa@8356@
    この基準に達すると、対応する荷重ケース(引張または圧縮)の損傷履歴変数が更新されます:
    • 引張りの場合:

      κ d t 2 n = κ d t 2 n 1 + max ε e q κ d t n 1 , 0 x s MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aa0 baaSqaaiaadsgacaWG0bGaaGOmaaqaaiaad6gaaaGccqGH9aqpcqaH 6oWAdaqhaaWcbaGaamizaiaadshacaaIYaaabaGaamOBaiabgkHiTi aaigdaaaGccqGHRaWkdaWcaaqaaiGac2gacaGGHbGaaiiEamaabmaa baGaeqyTdu2aaSbaaSqaaiaadwgacaWGXbaabeaakiabgkHiTiabeQ 7aRnaaDaaaleaacaWGKbGaamiDaaqaaiaad6gacqGHsislcaaIXaaa aOGaaiilaiaaicdaaiaawIcacaGLPaaaaeaacaWG4bWaaSbaaSqaai aadohaaeqaaaaaaaa@5780@ κ d t 1 n = κ d t 1 n 1 + Δ ε p x s MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aa0 baaSqaaiaadsgacaWG0bGaaGymaaqaaiaad6gaaaGccqGH9aqpcqaH 6oWAdaqhaaWcbaGaamizaiaadshacaaIXaaabaGaamOBaiabgkHiTi aaigdaaaGccqGHRaWkdaWcaaqaaiabfs5aejabew7aLnaaBaaaleaa caWGWbaabeaaaOqaaiaadIhadaWgaaWcbaGaam4Caaqabaaaaaaa@4ADF@ 、および κ d t n = ε e q n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aa0 baaSqaaiaadsgacaWG0baabaGaamOBaaaakiabg2da9iabew7aLnaa DaaaleaacaWGLbGaamyCaaqaaiaad6gaaaaaaa@405F@

    • 圧縮の場合:

      κ d c 2 n = κ d c 2 n 1 + α c max ε e q κ d c n 1 , 0 x s MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aa0 baaSqaaiaadsgacaWGJbGaaGOmaaqaaiaad6gaaaGccqGH9aqpcqaH 6oWAdaqhaaWcbaGaamizaiaadogacaaIYaaabaGaamOBaiabgkHiTi aaigdaaaGccqGHRaWkdaWcaaqaaiabeg7aHnaaBaaaleaacaWGJbaa beaakiGac2gacaGGHbGaaiiEamaabmaabaGaeqyTdu2aaSbaaSqaai aadwgacaWGXbaabeaakiabgkHiTiabeQ7aRnaaDaaaleaacaWGKbGa am4yaaqaaiaad6gacqGHsislcaaIXaaaaOGaaiilaiaaicdaaiaawI cacaGLPaaaaeaacaWG4bWaaSbaaSqaaiaadohaaeqaaaaaaaa@5A0A@ κ d c 1 n = κ d c 1 n 1 + α c β c Δ ε p x s MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aa0 baaSqaaiaadsgacaWGJbGaaGymaaqaaiaad6gaaaGccqGH9aqpcqaH 6oWAdaqhaaWcbaGaamizaiaadogacaaIXaaabaGaamOBaiabgkHiTi aaigdaaaGccqGHRaWkcqaHXoqydaWgaaWcbaGaam4yaaqabaGccqaH YoGydaWgaaWcbaGaam4yaaqabaGcdaWcaaqaaiabfs5aejabew7aLn aaBaaaleaacaWGWbaabeaaaOqaaiaadIhadaWgaaWcbaGaam4Caaqa baaaaaaa@5039@ および κ d c n = α c ε e q n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aa0 baaSqaaiaadsgacaWGJbaabaGaamOBaaaakiabg2da9iabeg7aHnaa BaaaleaacaWGJbaabeaakiabew7aLnaaDaaaleaacaWGLbGaamyCaa qaaiaad6gaaaaaaa@430B@

      ここで、

      α c = i σ p i σ p i + + σ p i σ p 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadogaaeqaaOGaeyypa0ZaaabuaeaadaWcaaqaamaaamaa baGaeq4Wdm3aaSbaaSqaaiaadchacaWGPbaabeaaaOGaayzkJiaawQ YiamaaBaaaleaacqGHsislaeqaaOWaaeWaaeaadaaadaqaaiabeo8a ZnaaBaaaleaacaWGWbGaamyAaaqabaaakiaawMYicaGLQmcadaWgaa WcbaGaey4kaScabeaakiabgUcaRmaaamaabaGaeq4Wdm3aaSbaaSqa aiaadchacaWGPbaabeaaaOGaayzkJiaawQYiamaaBaaaleaacqGHsi slaeqaaaGccaGLOaGaayzkaaaabaWaauWaaeaacaWHdpWaaSbaaSqa aiaahchaaeqaaaGccaGLjWUaayPcSdWaaWbaaSqabeaacaaIYaaaaa aaaeaacaWGPbaabeqdcqGHris5aaaa@5A27@ β c = f t q h 2 κ p 2 / 3 ρ ¯ 1 + 2 D f 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaadogaaeqaaOGaeyypa0ZaaSaaaeaacaWGMbWaaSbaaSqa aiaadshaaeqaaOGaamyCamaaBaaaleaacaWGObGaaGOmaaqabaGcda qadaqaaiabeQ7aRnaaBaaaleaacaWGWbaabeaaaOGaayjkaiaawMca amaakaaabaWaaSGbaeaacaaIYaaabaGaaG4maaaaaSqabaaakeaacu aHbpGCgaqeamaakaaabaGaaGymaiabgUcaRiaaikdacaWGebWaa0ba aSqaaiaadAgaaeaacaaIYaaaaaqabaaaaaaa@4BB0@ x s = 1 + A s 1 R s B S MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGZbaabeaakiabg2da9iaaigdacqGHRaWkdaqadaqaaiaa dgeadaWgaaWcbaGaam4CaaqabaGccqGHsislcaaIXaaacaGLOaGaay zkaaGaamOuamaaDaaaleaacaWGZbaabaGaamOqaiaadofaaaaaaa@4381@ R s = 6 σ ¯ v ρ ¯ if σ ¯ v 0 0 if σ ¯ v > 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaWGZbaabeaakiabg2da9maaceaabaqbaeqabiWaaaqaaiab gkHiTmaalaaabaWaaOaaaeaacaaI2aaaleqaaOGafq4WdmNbaebada WgaaWcbaGaamODaaqabaaakeaacuaHbpGCgaqeaaaaaeaacaqGPbGa aeOzaaqaaiqbeo8aZzaaraWaaSbaaSqaaiaadAhaaeqaaOGaeyizIm QaaGimaaqaaiaaicdaaeaacaqGPbGaaeOzaaqaaiqbeo8aZzaaraWa aSbaaSqaaiaadAhaaeqaaOGaeyOpa4JaaGimaaaaaiaawUhaaaaa@4F9E@

    非弾性ひずみは、損傷履歴変数から以下の式で求めることができます:

    ε i n e l t = κ d t 1 + ω t κ d t 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadMgacaWGUbGaamyzaiaadYgaaeaacaWG0baaaOGaeyyp a0JaeqOUdS2aaSbaaSqaaiaadsgacaWG0bGaaGymaaqabaGccqGHRa WkcqaHjpWDdaWgaaWcbaGaamiDaaqabaGccqaH6oWAdaWgaaWcbaGa amizaiaadshacaaIYaaabeaaaaa@4A6C@ および ε i n e l c = κ d c 1 + ω c κ d c 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadMgacaWGUbGaamyzaiaadYgaaeaacaWGJbaaaOGaeyyp a0JaeqOUdS2aaSbaaSqaaiaadsgacaWGJbGaaGymaaqabaGccqGHRa WkcqaHjpWDdaWgaaWcbaGaam4yaaqabaGccqaH6oWAdaWgaaWcbaGa amizaiaadogacaaIYaaabeaaaaa@4A28@

    損傷履歴変数は、最終的に対応する損傷変数の更新を可能にします。

    引張損傷に関しては、DTYPEパラメータ値に応じて、3つの異なる進展形状が利用可能です:
    • DTYPE = 1: 線形損傷 f t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWG0baabeaaaaa@3803@ は損傷開始時の強度限界、 w f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWG0baabeaaaaa@3803@ は剛性がヌルになる破壊変位 (図 3)。
      ω t = E κ d t w f f t w f + f t κ d t 1 h E κ d t w f f t h κ d t 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadshaaeqaaOGaeyypa0ZaaSaaaeaacaWGfbGaeqOUdS2a aSbaaSqaaiaadsgacaWG0baabeaakiaadEhadaWgaaWcbaGaamOzaa qabaGccqGHsislcaWGMbWaaSbaaSqaaiaadshaaeqaaOGaam4Damaa BaaaleaacaWGMbaabeaakiabgUcaRiaadAgadaWgaaWcbaGaamiDaa qabaGccqaH6oWAdaWgaaWcbaGaamizaiaadshacaaIXaaabeaakiaa dIgaaeaacaWGfbGaeqOUdS2aaSbaaSqaaiaadsgacaWG0baabeaaki aadEhadaWgaaWcbaGaamOzaaqabaGccqGHsislcaWGMbWaaSbaaSqa aiaadshaaeqaaOGaamiAaiabeQ7aRnaaBaaaleaacaWGKbGaamiDai aaikdaaeqaaaaaaaa@5D69@
      3. 線形損傷進展を用いた単一ユニット要素の単軸引張試験. f t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWG0baabeaaaaa@3803@ =3.5MPa、 w f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWG0baabeaaaaa@3803@ =0.002mm。


    • DTYPE = 2: 双線形損傷は、線形損傷と似ていますが、損傷の増分が傾きを変えるポイントを定義する w f 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGMbGaaGymaaqabaaaaa@38C1@ f t 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGMbGaaGymaaqabaaaaa@38C1@ の2つの値を使用する点が異なります(図 4)。
      ω t = E κ d t w f 1 f t w f 1 f t 1 f t κ d t 1 h E κ d t w f 1 + f t 1 f t h κ d t 2 if h ε i n e l t > 0 and h ε i n e l t < w f 1 E κ d t w f w f 1 f t 1 w f w f 1 + f t 1 κ d t 1 h f t 1 w f 1 E κ d t w f w f 1 f t 1 h κ d t 2 if h ε i n e l t > w f 1 and h ε i n e l t < w f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadshaaeqaaOGaeyypa0ZaaiqaaeaafaqabeGadaaabaWa aSaaaeaacaWGfbGaeqOUdS2aaSbaaSqaaiaadsgacaWG0baabeaaki aadEhadaWgaaWcbaGaamOzaiaaigdaaeqaaOGaeyOeI0IaamOzamaa BaaaleaacaWG0baabeaakiaadEhadaWgaaWcbaGaamOzaiaaigdaae qaaOGaeyOeI0YaaeWaaeaacaWGMbWaaSbaaSqaaiaadshacaaIXaaa beaakiabgkHiTiaadAgadaWgaaWcbaGaamiDaaqabaaakiaawIcaca GLPaaacqaH6oWAdaWgaaWcbaGaamizaiaadshacaaIXaaabeaakiaa dIgaaeaacaWGfbGaeqOUdS2aaSbaaSqaaiaadsgacaWG0baabeaaki aadEhadaWgaaWcbaGaamOzaiaaigdaaeqaaOGaey4kaSYaaeWaaeaa caWGMbWaaSbaaSqaaiaadshacaaIXaaabeaakiabgkHiTiaadAgada WgaaWcbaGaamiDaaqabaaakiaawIcacaGLPaaacaWGObGaeqOUdS2a aSbaaSqaaiaadsgacaWG0bGaaGOmaaqabaaaaaGcbaGaaeyAaiaabA gaaeaafaqabeqadaaabaGaamiAaiabew7aLnaaDaaaleaacaWGPbGa amOBaiaadwgacaWGSbaabaGaamiDaaaakiabg6da+iaaicdaaeaaca qGHbGaaeOBaiaabsgaaeaacaWGObGaeqyTdu2aa0baaSqaaiaadMga caWGUbGaamyzaiaadYgaaeaacaWG0baaaOGaeyipaWJaam4DamaaBa aaleaacaWGMbGaaGymaaqabaaaaaGcbaWaaSaaaeaacaWGfbGaeqOU dS2aaSbaaSqaaiaadsgacaWG0baabeaakmaabmaabaGaam4DamaaBa aaleaacaWGMbaabeaakiabgkHiTiaadEhadaWgaaWcbaGaamOzaiaa igdaaeqaaaGccaGLOaGaayzkaaGaeyOeI0IaamOzamaaBaaaleaaca WG0bGaaGymaaqabaGcdaqadaqaaiaadEhadaWgaaWcbaGaamOzaaqa baGccqGHsislcaWG3bWaaSbaaSqaaiaadAgacaaIXaaabeaaaOGaay jkaiaawMcaaiabgUcaRiaadAgadaWgaaWcbaGaamiDaiaaigdaaeqa aOGaeqOUdS2aaSbaaSqaaiaadsgacaWG0bGaaGymaaqabaGccaWGOb GaeyOeI0IaamOzamaaBaaaleaacaWG0bGaaGymaaqabaGccaWG3bWa aSbaaSqaaiaadAgacaaIXaaabeaaaOqaaiaadweacqaH6oWAdaWgaa WcbaGaamizaiaadshaaeqaaOWaaeWaaeaacaWG3bWaaSbaaSqaaiaa dAgaaeqaaOGaeyOeI0Iaam4DamaaBaaaleaacaWGMbGaaGymaaqaba aakiaawIcacaGLPaaacqGHsislcaWGMbWaaSbaaSqaaiaadshacaaI XaaabeaakiaadIgacqaH6oWAdaWgaaWcbaGaamizaiaadshacaaIYa aabeaaaaaakeaacaqGPbGaaeOzaaqaauaabeqabmaaaeaacaWGObGa eqyTdu2aa0baaSqaaiaadMgacaWGUbGaamyzaiaadYgaaeaacaWG0b aaaOGaeyOpa4Jaam4DamaaBaaaleaacaWGMbGaaGymaaqabaaakeaa caqGHbGaaeOBaiaabsgaaeaacaWGObGaeqyTdu2aa0baaSqaaiaadM gacaWGUbGaamyzaiaadYgaaeaacaWG0baaaOGaeyipaWJaam4Damaa BaaaleaacaWGMbaabeaaaaaaaaGccaGL7baaaaa@DB79@
      4. 双線形損傷進展を用いた単一ユニット要素の単軸引張試験. f t 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGMbGaaGymaaqabaaaaa@38C1@ =3.5MPa、 f t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWG0baabeaaaaa@3803@ =1.5MPa、 w f 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGMbGaaGymaaqabaaaaa@38C1@ =0.00075mm、 w f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWG0baabeaaaaa@3803@ =0.002mm。


    • DTYPE = 3: 変位しきい値 w f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWG0baabeaaaaa@3803@ が、単軸のひずみ軸と応力軟化の始まりの接線の交点に対応する指数損傷 (図 5)。
      ω t = 1 exp h ε i n e l t w f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadshaaeqaaOGaeyypa0JaaGymaiabgkHiTiGacwgacaGG 4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaacaWGObGaeqyTdu2aa0 baaSqaaiaadMgacaWGUbGaamyzaiaadYgaaeaacaWG0baaaaGcbaGa am4DamaaBaaaleaacaWGMbaabeaaaaaakiaawIcacaGLPaaaaaa@4A9B@
      5. 指数損傷進展を用いた単一ユニット要素の一軸引張試験. f t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWG0baabeaaaaa@3803@ =3.5 MPa、 w f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWG0baabeaaaaa@3803@ =0.002 mm。


    これらの異なる式において、 h MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaaaa@36E1@ はメッシュサイズ依存を避けるために使用できるパラメータです。IREG = 1の場合、正規化手法は使用されず、 h MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaaaa@36E1@ が1に設定されます。その場合、限界値 w f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGMbaabeaaaaa@3806@ は無次元の限界ひずみとなります。それ以外の場合は、IREG = 2の場合、Hillerborgの正規化手法 2 (Crack Brand法 3)が使用され、 h MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaaaa@36E1@ は初期要素サイズに等しくなります。すると、限界値 w f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGMbaabeaaaaa@3806@ は変位と同質の限界変位になります。Hillerborgの正規化手法は、 G f t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaDa aaleaacaWGMbaabaGaamiDaaaaaaa@38D0@ で示される引張破壊エネルギーが、どのような要素サイズを用いても一定に保たれるようにするものです(図 6)。
    6. IREQ = 0(左)、IREQ = 1(右)の2つの異なるメッシュサイズにおける双線形損傷による単軸引張試験。


    圧縮損傷に関しては、正規化手法を用いない指数関数的な進展形状のみ有効です(図 7)。メッシュサイズ依存性はそれほど敏感ではないと想定されます。
    ω c = 1 exp ε i n e l c e f c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadogaaeqaaOGaeyypa0JaaGymaiabgkHiTiGacwgacaGG 4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaacqaH1oqzdaqhaaWcba GaamyAaiaad6gacaWGLbGaamiBaaqaaiaadogaaaaakeaacaWGLbWa aSbaaSqaaiaadAgacaWGJbaabeaaaaaakiaawIcacaGLPaaaaaa@4A62@
    7. 単一ユニット要素の単軸圧縮試験. ここで、 e f c = 5 × 10 ( 4 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGLbWdamaaBaaaleaapeGaamOzaiaadogaa8aabeaak8qacqGH 9aqpcaaI1aGaaGjbV=aacaqGxdGaaGjbV=qacaaIXaGaaGima8aada ahaaWcbeqaa8qacaGGOaGaeyOeI0IaaGinaiaacMcaaaaaaa@4461@


    応力計算における損傷の影響は、DFLAGパラメータ値によって異なります:
    • DFLAG = 1: 引張から圧縮に切り替わる際の亀裂閉口を考慮し、初期剛性を回復させる非対称軟化。反対に、引張から圧縮に切り替えると、すでにある亀裂が再び開きます。(図 8)。
      σ = 1 ω t σ e f f t + 1 ω c σ e f f c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4Wdiabg2 da9maabmaabaGaaGymaiabgkHiTiabeM8a3naaBaaaleaacaWG0baa beaaaOGaayjkaiaawMcaaiaaho8adaqhaaWcbaGaamyzaiaadAgaca WGMbaabaGaamiDaaaakiabgUcaRmaabmaabaGaaGymaiabgkHiTiab eM8a3naaBaaaleaacaWGJbaabeaaaOGaayjkaiaawMcaaiaaho8ada qhaaWcbaGaamyzaiaadAgacaWGMbaabaGaam4yaaaaaaa@4FD6@
      ここで、 σ e f f t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4WdmaaDa aaleaacaWGLbGaamOzaiaadAgaaeaacaWG0baaaaaa@3B28@ σ e f f c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4WdmaaDa aaleaacaWGLbGaamOzaiaadAgaaeaacaWG0baaaaaa@3B28@ はそれぞれ、損傷していない(有効な)応力テンソルの引張部分と圧縮部分です。
      8. 非対称損傷軟化を伴う載荷 / 除荷単軸試験


    • DFLAG = 2: 引張と圧縮の両方における引張損傷の影響のみを考慮した等方軟化。この場合、亀裂閉口は考慮されません。引張から圧縮、またはその反対に切り替えても、剛性の変化は見られません(図 9)。また、引張損傷は圧縮での進展は少ないと考えられます。
      σ = 1 ω t σ e f f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4Wdiabg2 da9maabmaabaGaaGymaiabgkHiTiabeM8a3naaBaaaleaacaWG0baa beaaaOGaayjkaiaawMcaaiaaho8adaWgaaWcbaGaamyzaiaadAgaca WGMbaabeaaaaa@42B0@
      9. 等方性損傷軟化を伴う載荷 / 除荷単軸試験


    • DFLAG = 3: 引張と圧縮の両損傷の影響が考慮され、累積される乗法的軟化(図 10)。
      σ = 1 1 ω t 1 ω c σ e f f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4Wdiabg2 da9maabmaabaGaaGymaiabgkHiTmaabmaabaGaaGymaiabgkHiTiab eM8a3naaBaaaleaacaWG0baabeaaaOGaayjkaiaawMcaamaabmaaba GaaGymaiabgkHiTiabeM8a3naaBaaaleaacaWGJbaabeaaaOGaayjk aiaawMcaaaGaayjkaiaawMcaaiaaho8adaWgaaWcbaGaamyzaiaadA gacaWGMbaabeaaaaa@4BFD@
      10. 乗法的損傷軟化を伴う載荷 / 除荷単軸試験


  5. CDPM2モデルで考慮される最後の現象はひずみ速度依存性です。ひずみ速度が大きい場合、コンクリートは引張または圧縮強度の限界が大きくなる可能性が高くなります。これは以下の式を導入します:

    f t r a t e = α r a t e f t MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaDa aaleaacaWG0baabaGaamOCaiaadggacaWG0bGaamyzaaaakiabg2da 9iabeg7aHnaaBaaaleaacaWGYbGaamyyaiaadshacaWGLbaabeaaki aadAgadaWgaaWcbaGaamiDaaqabaaaaa@447A@ f c r a t e = α r a t e f c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaDa aaleaacaWGJbaabaGaamOCaiaadggacaWG0bGaamyzaaaakiabg2da 9iabeg7aHnaaBaaaleaacaWGYbGaamyyaiaadshacaWGLbaabeaaki aadAgadaWgaaWcbaGaam4yaaqabaaaaa@4458@ および f t 1 r a t e = α r a t e f t 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaDa aaleaacaWG0bGaaGymaaqaaiaadkhacaWGHbGaamiDaiaadwgaaaGc cqGH9aqpcqaHXoqydaWgaaWcbaGaamOCaiaadggacaWG0bGaamyzaa qabaGccaWGMbWaaSbaaSqaaiaadshacaaIXaaabeaaaaa@45F0@

    DIF(Dynamic Increase Factor) α r a t e MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadkhacaWGHbGaamiDaiaadwgaaeqaaaaa@3B7F@ は以下で計算されます:

    α r a t e = 1 α c α r a t e t + α c α r a t e c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadkhacaWGHbGaamiDaiaadwgaaeqaaOGaeyypa0ZaaeWa aeaacaaIXaGaeyOeI0IaeqySde2aaSbaaSqaaiaadogaaeqaaaGcca GLOaGaayzkaaGaeqySde2aa0baaSqaaiaadkhacaWGHbGaamiDaiaa dwgaaeaacaWG0baaaOGaey4kaSIaeqySde2aaSbaaSqaaiaadogaae qaaOGaeqySde2aa0baaSqaaiaadkhacaWGHbGaamiDaiaadwgaaeaa caWGJbaaaaaa@531F@

    ここで、 α c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadogaaeqaaaaa@38A7@ は、コメント3の損傷履歴変数の式で定義された圧縮係数です。

    コンクリートは圧縮よりも引張の方がひずみ速度の影響を受けやすいため、引張と圧縮ではひずみ速度依存性が異なります。引張と圧縮の2つの動的増加係数は次のように計算されます:

    α r a t e t = 1 for ε ˙ max 30 × 10 6 s 1 ε ˙ ε ˙ t 0 δ s for 30 × 10 6 s 1 < ε ˙ max 1 s 1 β s ε ˙ ε ˙ t 0 1 3 for 1 s 1 ε ˙ max MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aa0 baaSqaaiaadkhacaWGHbGaamiDaiaadwgaaeaacaWG0baaaOGaeyyp a0ZaaiqaaeaafaqabeWadaaabaGaaGymaaqaaiaabAgacaqGVbGaae OCaaqaaiqbew7aLzaacaWaaSbaaSqaaiGac2gacaGGHbGaaiiEaaqa baGccqGHKjYOcaaIZaGaaGimaiabgEna0kaaigdacaaIWaWaaWbaaS qabeaacqGHsislcaaI2aaaaOGaae4CamaaCaaaleqabaGaeyOeI0Ia aGymaaaaaOqaamaabmaabaWaaSaaaeaacuaH1oqzgaGaaaqaaiqbew 7aLzaacaWaaSbaaSqaaiaadshacaaIWaaabeaaaaaakiaawIcacaGL PaaadaahaaWcbeqaaiabes7aKnaaBaaameaacaWGZbaabeaaaaaake aacaqGMbGaae4BaiaabkhaaeaacaaIZaGaaGimaiabgEna0kaaigda caaIWaWaaWbaaSqabeaacqGHsislcaaI2aaaaOGaae4CamaaCaaale qabaGaeyOeI0IaaGymaaaakiabgYda8iqbew7aLzaacaWaaSbaaSqa aiGac2gacaGGHbGaaiiEaaqabaGccqGHKjYOcaaIXaGaae4CamaaCa aaleqabaGaeyOeI0IaaGymaaaaaOqaaiabek7aInaaBaaaleaacaWG ZbaabeaakmaabmaabaWaaSaaaeaacuaH1oqzgaGaaaqaaiqbew7aLz aacaWaaSbaaSqaaiaadshacaaIWaaabeaaaaaakiaawIcacaGLPaaa daahaaWcbeqaamaaliaabaGaaGymaaqaaiaaiodaaaaaaaGcbaGaae Ozaiaab+gacaqGYbaabaGaaGymaiaabohadaahaaWcbeqaaiabgkHi TiaaigdaaaGccqGHKjYOcuaH1oqzgaGaamaaBaaaleaaciGGTbGaai yyaiaacIhaaeqaaaaaaOGaay5Eaaaaaa@8C22@ ここで、 δ s = 1 1 + 8 f c f c 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaadohaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGym aiabgUcaRiaaiIdadaWccaqaaiaadAgadaWgaaWcbaGaam4yaaqaba aakeaacaWGMbWaaSbaaSqaaiaadogacaaIWaaabeaaaaaaaaaa@41CB@ log β s = 6 δ s 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ gacaGGNbGaeqOSdi2aaSbaaSqaaiaadohaaeqaaOGaeyypa0JaaGOn aiabes7aKnaaBaaaleaacaWGZbaabeaakiabgkHiTiaaikdaaaa@41D5@

    α r a t e c = 1 for ε ˙ max 30 × 10 6 s 1 ε ˙ ε ˙ c 0 1.026 α s for 30 × 10 6 s 1 < ε ˙ max 30 s 1 γ s ε ˙ ε ˙ c 0 1 3 for 30s 1 ε ˙ max MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aa0 baaSqaaiaadkhacaWGHbGaamiDaiaadwgaaeaacaWGJbaaaOGaeyyp a0ZaaiqaaeaafaqabeWadaaabaGaaGymaaqaaiaabAgacaqGVbGaae OCaaqaaiqbew7aLzaacaWaaSbaaSqaaiGac2gacaGGHbGaaiiEaaqa baGccqGHKjYOcaaIZaGaaGimaiabgEna0kaaigdacaaIWaWaaWbaaS qabeaacqGHsislcaaI2aaaaOGaae4CamaaCaaaleqabaGaeyOeI0Ia aGymaaaaaOqaamaabmaabaWaaSaaaeaacuaH1oqzgaGaaaqaaiqbew 7aLzaacaWaaSbaaSqaaiaadogacaaIWaaabeaaaaaakiaawIcacaGL PaaadaahaaWcbeqaaiaaigdacaGGUaGaaGimaiaaikdacaaI2aGaeq ySde2aaSbaaWqaaiaadohaaeqaaaaaaOqaaiaabAgacaqGVbGaaeOC aaqaaiaaiodacaaIWaGaey41aqRaaGymaiaaicdadaahaaWcbeqaai abgkHiTiaaiAdaaaGccaqGZbWaaWbaaSqabeaacqGHsislcaaIXaaa aOGaeyipaWJafqyTduMbaiaadaWgaaWcbaGaciyBaiaacggacaGG4b aabeaakiabgsMiJkaaiodacaaIWaGaae4CamaaCaaaleqabaGaeyOe I0IaaGymaaaaaOqaaiabeo7aNnaaBaaaleaacaWGZbaabeaakmaabm aabaWaaSaaaeaacuaH1oqzgaGaaaqaaiqbew7aLzaacaWaaSbaaSqa aiaadogacaaIWaaabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaam aaliaabaGaaGymaaqaaiaaiodaaaaaaaGcbaGaaeOzaiaab+gacaqG YbaabaGaae4maiaabcdacaqGZbWaaWbaaSqabeaacqGHsislcaaIXa aaaOGaeyizImQafqyTduMbaiaadaWgaaWcbaGaciyBaiaacggacaGG 4baabeaaaaaakiaawUhaaaaa@90FC@ ここで、 α s = 1 5 + 9 f c f c 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadohaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGyn aiabgUcaRiaaiMdadaWccaqaaiaadAgadaWgaaWcbaGaam4yaaqaba aakeaacaWGMbWaaSbaaSqaaiaadogacaaIWaaabeaaaaaaaaaa@41CA@ log γ s = 6.56 α s 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ gacaGGNbGaeq4SdC2aaSbaaSqaaiaadohaaeqaaOGaeyypa0JaaGOn aiaac6cacaaI1aGaaGOnaiabeg7aHnaaBaaaleaacaWGZbaabeaaki abgkHiTiaaikdaaaa@4406@

    等価ひずみ速度の偏差 ε ˙ は、上記の式でDIFを計算するために使用されます。

    ひずみ速度の影響については、パラメータを特定する必要はありません。フラグIRATE2に設定するだけです。図 11 は、CDPM2の挙動に対するひずみ速度の影響が予想される傾向を示しています。実験でよく見られるように、引張/圧縮の強度限界を上げることで、破壊時の散逸エネルギーも影響を受けます。
    11. ひずみ速度依存性を有する引張/圧縮単軸試験 (IRATE = 1)


  6. 偏心値のデフォルト値は次のようにして得られます:

    ε i = f t 1.16 f c 2 f c 2 1.16 f c f c 2 f t 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeyypa0ZaaSaaaeaacaWGMbWaaSbaaSqa aiaadshaaeqaaOWaaeWaaeaadaqadaqaaiaaigdacaGGUaGaaGymai aaiAdacaWGMbWaaSbaaSqaaiaadogaaeqaaaGccaGLOaGaayzkaaWa aWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamOzamaaDaaaleaacaWGJb aabaGaaGOmaaaaaOGaayjkaiaawMcaaaqaaiaaigdacaGGUaGaaGym aiaaiAdacaWGMbWaaSbaaSqaaiaadogaaeqaaOWaaeWaaeaacaWGMb Waa0baaSqaaiaadogaaeaacaaIYaaaaOGaeyOeI0IaamOzamaaDaaa leaacaWG0baabaGaaGOmaaaaaOGaayjkaiaawMcaaaaaaaa@559B@ および e c c = 1 + ε i 2 ε i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaWGJbGaam4yaaqabaGccqGH9aqpdaWcaaqaaiaaigdacqGH RaWkcqaH1oqzdaWgaaWcbaGaamyAaaqabaaakeaacaaIYaGaeyOeI0 IaeqyTdu2aaSbaaSqaaiaadMgaaeqaaaaaaaa@42CC@

  7. 引張破壊エネルギー、 G f t はモデルの入力として直接使用されませんが、破壊時の引張非弾性変位/ひずみの値を計算するために使用されます。 w f

    線形軟化則(DTYPE = 1)の場合、引張破壊エネルギーは次のようになります:

    w f   =   2 G f t f t IREG = 2の場合、デフォルト)

    w f   =   2 G f t h f t IREG = 1の場合、h = 識別のための基準要素サイズ)

    双線形軟化則(DTYPE = 2)の場合、引張破壊エネルギーは次のようになります:

    G f t   =   f t w f 1 2 + σ 1 w f 2

    仮に σ 1 / f t = 0.3であり w f 1 / w f = 0.15の場合以下のようになります:

    w f   =   G f t 0 . 225 f t IREG = 2の場合、デフォルト)

    w f   =   G f t 0 . 225 f t h IREG = 1の場合、h = 識別のための基準要素サイズ

  8. 圧縮破壊エネルギー、 G f c はモデルの入力として直接使用されませんが、破壊に近い圧縮非弾性ひずみの値を計算するために使用されます:
    ε f c   =   G f c f c h A s

    このとき、h = 識別のための基準要素サイズ、および A s は延性の尺度です:

    x s   =   1 + A s - 1   R s B S

  9. 全体損傷変数は、/ANIM/BRICK/DAMGまたは/HED/SOLID/DAMGを使用して出力されます。
1 Peter Grassl, Dimitrios Xenos, Ulrika Nyström, Rasmus Rempling, Kent Gylltoft, CDPM2: A damage-plasticity approach to modelling the failure of concrete, International Journal of Solids and Structures, Volume 50, Issue 24, 2013, Pages 3805-3816, ISSN 0020-7683
2 A. Hillerborg, M. Modéer, P.-E. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and Concrete Research, Volume 6, Issue 6, 1976, Pages 773-781, ISSN 0008-8846
3 Bažant, Z.P., Oh, B.H. Crack band theory for fracture of concrete. Mat. Constr. 16, 155–177 (1983)