CDPM2材料則は、いくつかの現象を考慮した使いやすいコンクリート材料則です。この構成モデルは少ないパラメータで設定が可能です。必要な物理パラメータは以下の通りです:
E
ヤング率
ν
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4gaaa@37AB@
ポアソン比
f
t
引張強度
f
c
圧縮強度
G
f
t
引張破壊エネルギー
G
f
c
(オプション)圧縮破壊エネルギー
この法則では、弾性挙動は等方的であると仮定されています。塑性挙動は、次の降伏関数(図 1 )で計算されます:ここでは、応力空間におけるHaigh-Westergaard座標が考慮されています:
σ
¯
v
=
tr
(
σ
)
3
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbae
badaWgaaWcbaGaamODaaqabaGccqGH9aqpdaWcaaqaaiaabshacaqG
YbGaaiikaiaaho8acaGGPaaabaGaaG4maaaaaaa@3F67@
、
ρ
¯
=
2
J
2
=
s
:
s
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyWdiNbae
bacqGH9aqpdaGcaaqaaiaaikdacaWGkbWaaSbaaSqaaiaaikdaaeqa
aaqabaGccqGH9aqpdaGcaaqaaiaahohacaGG6aGaaC4CaaWcbeaaaa
a@3F35@
、
θ
¯
=
1
3
arccos
3
3
2
J
3
J
2
3
/
2
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbae
bacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIZaaaaiGacggacaGGYbGa
ai4yaiaacogacaGGVbGaai4CamaabmaabaWaaSaaaeaacaaIZaWaaO
aaaeaacaaIZaaaleqaaaGcbaGaaGOmaaaadaWcaaqaaiaadQeadaWg
aaWcbaGaaG4maaqabaaakeaacaWGkbWaa0baaSqaaiaaikdaaeaaca
aIZaGaai4laiaaikdaaaaaaaGccaGLOaGaayzkaaaaaa@4998@
ここで、
κ
p
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aaS
baaSqaaiaadchaaeqaaaaa@38C6@
硬化変数
f
c
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa
aaleaacaWGJbaabeaaaaa@37F2@
圧縮での限界強度
f
t
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa
aaleaacaWGJbaabeaaaaa@37F2@
引張での限界強度
m
0
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa
aaleaacaaIWaaabeaaaaa@37CB@
偏心の影響を考慮したパラメータ
e
c
c
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa
aaleaacaWGJbGaam4yaaqabaaaaa@38DA@
図 1 . CDPM2モデルの降伏関数形状(Grasslより)
q
h
1
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa
aaleaacaWGObGaaGymaaqabaaaaa@38BD@
と
q
h
2
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa
aaleaacaWGObGaaGymaaqabaaaaa@38BD@
は、(
図 2 )で定義される2つの硬化関数です。
図 2 . 硬化関数形状(Grasslより)
ここで、
q
h
0
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa
aaleaacaWGObGaaGimaaqabaaaaa@38BC@
は、
0
<
q
h
0
<
1
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgY
da8iaadghadaWgaaWcbaGaamiAaiaaicdaaeqaaOGaeyipaWJaaGym
aaaa@3C43@
となるように定義された初期硬化です。
H
p
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa
aaleaacaWGWbaabeaaaaa@37E1@
は硬化係数で、推奨値は0.5です。内部変数
κ
p
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aaS
baaSqaaiaadchaaeqaaaaa@38C6@
の変遷は以下の通り。
引張と圧縮の間の偏差断面形状を特定するのにWilliam-Warnke関数が使用されます(図 1 )。
塑性ひずみの変遷は、以下の式を用いた非関連塑性ポテンシャルによって定義されます:ここで、
m
g
=
A
g
B
g
f
c
exp
σ
¯
v
−
q
h
2
f
t
3
B
g
f
c
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa
aaleaacaWGNbaabeaakiabg2da9iaadgeadaWgaaWcbaGaam4zaaqa
baGccaWGcbWaaSbaaSqaaiaadEgaaeqaaOGaamOzamaaBaaaleaaca
WGJbaabeaakiGacwgacaGG4bGaaiiCamaalaaabaGafq4WdmNbaeba
daWgaaWcbaGaamODaaqabaGccqGHsislcaWGXbWaaSbaaSqaaiaadI
gacaaIYaaabeaakmaaliaabaGaamOzamaaBaaaleaacaWG0baabeaa
aOqaaiaaiodaaaaabaGaamOqamaaBaaaleaacaWGNbaabeaakiaadA
gadaWgaaWcbaGaam4yaaqabaaaaaaa@4F71@
A
g
=
3
f
t
q
h
2
f
c
+
m
0
2
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa
aaleaacaWGNbaabeaakiabg2da9maalaaabaGaaG4maiaadAgadaWg
aaWcbaGaamiDaaqabaGccaWGXbWaaSbaaSqaaiaadIgacaaIYaaabe
aaaOqaaiaadAgadaWgaaWcbaGaam4yaaqabaaaaOGaey4kaSYaaSaa
aeaacaWGTbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaaGOmaaaaaaa@4437@
B
g
=
q
h
2
3
1
+
f
t
f
c
ln
A
g
−
ln
2
D
f
−
1
−
ln
3
q
h
2
+
m
0
2
+
ln
D
f
+
1
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa
aaleaacaWGNbaabeaakiabg2da9maalaaabaWaaeWaaeaadaWccaqa
aiaadghadaWgaaWcbaGaamiAaiaaikdaaeqaaaGcbaGaaG4maaaaai
aawIcacaGLPaaadaqadaqaaiaaigdacqGHRaWkdaWccaqaaiaadAga
daWgaaWcbaGaamiDaaqabaaakeaacaWGMbWaaSbaaSqaaiaadogaae
qaaaaaaOGaayjkaiaawMcaaaqaaiGacYgacaGGUbGaamyqamaaBaaa
leaacaWGNbaabeaakiabgkHiTiGacYgacaGGUbWaaeWaaeaacaaIYa
GaamiramaaBaaaleaacaWGMbaabeaakiabgkHiTiaaigdaaiaawIca
caGLPaaacqGHsislciGGSbGaaiOBamaabmaabaGaaG4maiaadghada
WgaaWcbaGaamiAaiaaikdaaeqaaOGaey4kaSYaaSGaaeaacaWGTbWa
aSbaaSqaaiaaicdaaeqaaaGcbaGaaGOmaaaaaiaawIcacaGLPaaacq
GHRaWkciGGSbGaaiOBamaabmaabaGaamiramaaBaaaleaacaWGMbaa
beaakiabgUcaRiaaigdaaiaawIcacaGLPaaaaaaaaa@6542@
ここで、
D
f
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa
aaleaacaWGMbaabeaaaaa@37D3@
は膨張パラメータ。
この塑性ポテンシャルは、塑性ひずみテンソルの進展を計算するために使用されます。したがって内部変数
κ
p
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aaS
baaSqaaiaadchaaeqaaaaa@38C6@
の進展は以下のようになります:
ここで、
x
h
=
A
h
−
A
h
−
B
h
exp
−
R
h
σ
¯
v
C
h
if
R
h
σ
¯
v
≥
0
E
h
exp
R
h
σ
¯
v
F
h
+
D
h
if
R
h
σ
¯
v
<
0
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa
aaleaacaWGObaabeaakiabg2da9maaceaabaqbaeqabiWaaaqaaiaa
dgeadaWgaaWcbaGaamiAaaqabaGccqGHsisldaqadaqaaiaadgeada
WgaaWcbaGaamiAaaqabaGccqGHsislcaWGcbWaaSbaaSqaaiaadIga
aeqaaaGccaGLOaGaayzkaaGaciyzaiaacIhacaGGWbWaaeWaaeaada
WccaqaaiabgkHiTiaadkfadaWgaaWcbaGaamiAaaqabaGcdaqadaqa
aiqbeo8aZzaaraWaaSbaaSqaaiaadAhaaeqaaaGccaGLOaGaayzkaa
aabaGaam4qamaaBaaaleaacaWGObaabeaaaaaakiaawIcacaGLPaaa
aeaacaqGPbGaaeOzaaqaaiaadkfadaWgaaWcbaGaamiAaaqabaGcda
qadaqaaiqbeo8aZzaaraWaaSbaaSqaaiaadAhaaeqaaaGccaGLOaGa
ayzkaaGaeyyzImRaaGimaaqaaiaadweadaWgaaWcbaGaamiAaaqaba
GcciGGLbGaaiiEaiaacchadaqadaqaamaaliaabaGaamOuamaaBaaa
leaacaWGObaabeaakmaabmaabaGafq4WdmNbaebadaWgaaWcbaGaam
ODaaqabaaakiaawIcacaGLPaaaaeaacaWGgbWaaSbaaSqaaiaadIga
aeqaaaaaaOGaayjkaiaawMcaaiabgUcaRiaadseadaWgaaWcbaGaam
iAaaqabaaakeaacaqGPbGaaeOzaaqaaiaadkfadaWgaaWcbaGaamiA
aaqabaGcdaqadaqaaiqbeo8aZzaaraWaaSbaaSqaaiaadAhaaeqaaa
GccaGLOaGaayzkaaGaeyipaWJaaGimaaaaaiaawUhaaaaa@77F6@
ここで、
ε
˙
p
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaacu
aH1oqzgaGaamaaBaaaleaacaWGWbaabeaaaOGaayzcSlaawQa7aaaa
@3BF5@
は塑性ひずみテンソルの増分のユークリッドノルムです。
CDPM2モデルは、引張と圧縮の間で非対称な損傷進展を考慮します。これらの変数はそれぞれ
ω
t
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS
baaSqaaiaadshaaeqaaaaa@38E6@
と
ω
c
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS
baaSqaaiaadshaaeqaaaaa@38E6@
で示されます。損傷変数の変遷は、次のように定義されたひずみ基準によって引き起こされます:この基準に達すると、対応する荷重ケース(引張または圧縮)の損傷履歴変数が更新されます:
引張りの場合:
κ
d
t
2
n
=
κ
d
t
2
n
−
1
+
max
ε
e
q
−
κ
d
t
n
−
1
,
0
x
s
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aa0
baaSqaaiaadsgacaWG0bGaaGOmaaqaaiaad6gaaaGccqGH9aqpcqaH
6oWAdaqhaaWcbaGaamizaiaadshacaaIYaaabaGaamOBaiabgkHiTi
aaigdaaaGccqGHRaWkdaWcaaqaaiGac2gacaGGHbGaaiiEamaabmaa
baGaeqyTdu2aaSbaaSqaaiaadwgacaWGXbaabeaakiabgkHiTiabeQ
7aRnaaDaaaleaacaWGKbGaamiDaaqaaiaad6gacqGHsislcaaIXaaa
aOGaaiilaiaaicdaaiaawIcacaGLPaaaaeaacaWG4bWaaSbaaSqaai
aadohaaeqaaaaaaaa@5780@
、
κ
d
t
1
n
=
κ
d
t
1
n
−
1
+
Δ
ε
p
x
s
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aa0
baaSqaaiaadsgacaWG0bGaaGymaaqaaiaad6gaaaGccqGH9aqpcqaH
6oWAdaqhaaWcbaGaamizaiaadshacaaIXaaabaGaamOBaiabgkHiTi
aaigdaaaGccqGHRaWkdaWcaaqaaiabfs5aejabew7aLnaaBaaaleaa
caWGWbaabeaaaOqaaiaadIhadaWgaaWcbaGaam4Caaqabaaaaaaa@4ADF@
、および
κ
d
t
n
=
ε
e
q
n
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aa0
baaSqaaiaadsgacaWG0baabaGaamOBaaaakiabg2da9iabew7aLnaa
DaaaleaacaWGLbGaamyCaaqaaiaad6gaaaaaaa@405F@
圧縮の場合:
κ
d
c
2
n
=
κ
d
c
2
n
−
1
+
α
c
max
ε
e
q
−
κ
d
c
n
−
1
,
0
x
s
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aa0
baaSqaaiaadsgacaWGJbGaaGOmaaqaaiaad6gaaaGccqGH9aqpcqaH
6oWAdaqhaaWcbaGaamizaiaadogacaaIYaaabaGaamOBaiabgkHiTi
aaigdaaaGccqGHRaWkdaWcaaqaaiabeg7aHnaaBaaaleaacaWGJbaa
beaakiGac2gacaGGHbGaaiiEamaabmaabaGaeqyTdu2aaSbaaSqaai
aadwgacaWGXbaabeaakiabgkHiTiabeQ7aRnaaDaaaleaacaWGKbGa
am4yaaqaaiaad6gacqGHsislcaaIXaaaaOGaaiilaiaaicdaaiaawI
cacaGLPaaaaeaacaWG4bWaaSbaaSqaaiaadohaaeqaaaaaaaa@5A0A@
、
κ
d
c
1
n
=
κ
d
c
1
n
−
1
+
α
c
β
c
Δ
ε
p
x
s
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aa0
baaSqaaiaadsgacaWGJbGaaGymaaqaaiaad6gaaaGccqGH9aqpcqaH
6oWAdaqhaaWcbaGaamizaiaadogacaaIXaaabaGaamOBaiabgkHiTi
aaigdaaaGccqGHRaWkcqaHXoqydaWgaaWcbaGaam4yaaqabaGccqaH
YoGydaWgaaWcbaGaam4yaaqabaGcdaWcaaqaaiabfs5aejabew7aLn
aaBaaaleaacaWGWbaabeaaaOqaaiaadIhadaWgaaWcbaGaam4Caaqa
baaaaaaa@5039@
および
κ
d
c
n
=
α
c
ε
e
q
n
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aa0
baaSqaaiaadsgacaWGJbaabaGaamOBaaaakiabg2da9iabeg7aHnaa
BaaaleaacaWGJbaabeaakiabew7aLnaaDaaaleaacaWGLbGaamyCaa
qaaiaad6gaaaaaaa@430B@
ここで、
α
c
=
∑
i
σ
p
i
−
σ
p
i
+
+
σ
p
i
−
σ
p
2
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS
baaSqaaiaadogaaeqaaOGaeyypa0ZaaabuaeaadaWcaaqaamaaamaa
baGaeq4Wdm3aaSbaaSqaaiaadchacaWGPbaabeaaaOGaayzkJiaawQ
YiamaaBaaaleaacqGHsislaeqaaOWaaeWaaeaadaaadaqaaiabeo8a
ZnaaBaaaleaacaWGWbGaamyAaaqabaaakiaawMYicaGLQmcadaWgaa
WcbaGaey4kaScabeaakiabgUcaRmaaamaabaGaeq4Wdm3aaSbaaSqa
aiaadchacaWGPbaabeaaaOGaayzkJiaawQYiamaaBaaaleaacqGHsi
slaeqaaaGccaGLOaGaayzkaaaabaWaauWaaeaacaWHdpWaaSbaaSqa
aiaahchaaeqaaaGccaGLjWUaayPcSdWaaWbaaSqabeaacaaIYaaaaa
aaaeaacaWGPbaabeqdcqGHris5aaaa@5A27@
、
β
c
=
f
t
q
h
2
κ
p
2
/
3
ρ
¯
1
+
2
D
f
2
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS
baaSqaaiaadogaaeqaaOGaeyypa0ZaaSaaaeaacaWGMbWaaSbaaSqa
aiaadshaaeqaaOGaamyCamaaBaaaleaacaWGObGaaGOmaaqabaGcda
qadaqaaiabeQ7aRnaaBaaaleaacaWGWbaabeaaaOGaayjkaiaawMca
amaakaaabaWaaSGbaeaacaaIYaaabaGaaG4maaaaaSqabaaakeaacu
aHbpGCgaqeamaakaaabaGaaGymaiabgUcaRiaaikdacaWGebWaa0ba
aSqaaiaadAgaaeaacaaIYaaaaaqabaaaaaaa@4BB0@
、
x
s
=
1
+
A
s
−
1
R
s
B
S
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa
aaleaacaWGZbaabeaakiabg2da9iaaigdacqGHRaWkdaqadaqaaiaa
dgeadaWgaaWcbaGaam4CaaqabaGccqGHsislcaaIXaaacaGLOaGaay
zkaaGaamOuamaaDaaaleaacaWGZbaabaGaamOqaiaadofaaaaaaa@4381@
と
R
s
=
−
6
σ
¯
v
ρ
¯
if
σ
¯
v
≤
0
0
if
σ
¯
v
>
0
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa
aaleaacaWGZbaabeaakiabg2da9maaceaabaqbaeqabiWaaaqaaiab
gkHiTmaalaaabaWaaOaaaeaacaaI2aaaleqaaOGafq4WdmNbaebada
WgaaWcbaGaamODaaqabaaakeaacuaHbpGCgaqeaaaaaeaacaqGPbGa
aeOzaaqaaiqbeo8aZzaaraWaaSbaaSqaaiaadAhaaeqaaOGaeyizIm
QaaGimaaqaaiaaicdaaeaacaqGPbGaaeOzaaqaaiqbeo8aZzaaraWa
aSbaaSqaaiaadAhaaeqaaOGaeyOpa4JaaGimaaaaaiaawUhaaaaa@4F9E@
非弾性ひずみは、損傷履歴変数から以下の式で求めることができます:
ε
i
n
e
l
t
=
κ
d
t
1
+
ω
t
κ
d
t
2
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0
baaSqaaiaadMgacaWGUbGaamyzaiaadYgaaeaacaWG0baaaOGaeyyp
a0JaeqOUdS2aaSbaaSqaaiaadsgacaWG0bGaaGymaaqabaGccqGHRa
WkcqaHjpWDdaWgaaWcbaGaamiDaaqabaGccqaH6oWAdaWgaaWcbaGa
amizaiaadshacaaIYaaabeaaaaa@4A6C@
および
ε
i
n
e
l
c
=
κ
d
c
1
+
ω
c
κ
d
c
2
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0
baaSqaaiaadMgacaWGUbGaamyzaiaadYgaaeaacaWGJbaaaOGaeyyp
a0JaeqOUdS2aaSbaaSqaaiaadsgacaWGJbGaaGymaaqabaGccqGHRa
WkcqaHjpWDdaWgaaWcbaGaam4yaaqabaGccqaH6oWAdaWgaaWcbaGa
amizaiaadogacaaIYaaabeaaaaa@4A28@
損傷履歴変数は、最終的に対応する損傷変数の更新を可能にします。
引張損傷に関しては、
DTYPE パラメータ値に応じて、3つの異なる進展形状が利用可能です:
DTYPE = 1 : 線形損傷
f
t
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa
aaleaacaWG0baabeaaaaa@3803@
は損傷開始時の強度限界、
w
f
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa
aaleaacaWG0baabeaaaaa@3803@
は剛性がヌルになる破壊変位 (図 3 )。図 3 . 線形損傷進展を用いた単一ユニット要素の単軸引張試験 .
f
t
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa
aaleaacaWG0baabeaaaaa@3803@
=3.5MPa、
w
f
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa
aaleaacaWG0baabeaaaaa@3803@
=0.002mm。
DTYPE = 2 : 双線形損傷は、線形損傷と似ていますが、損傷の増分が傾きを変えるポイントを定義する
w
f
1
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa
aaleaacaWGMbGaaGymaaqabaaaaa@38C1@
と
f
t
1
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa
aaleaacaWGMbGaaGymaaqabaaaaa@38C1@
の2つの値を使用する点が異なります(図 4 )。図 4 . 双線形損傷進展を用いた単一ユニット要素の単軸引張試験 .
f
t
1
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa
aaleaacaWGMbGaaGymaaqabaaaaa@38C1@
=3.5MPa、
f
t
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa
aaleaacaWG0baabeaaaaa@3803@
=1.5MPa、
w
f
1
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa
aaleaacaWGMbGaaGymaaqabaaaaa@38C1@
=0.00075mm、
w
f
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa
aaleaacaWG0baabeaaaaa@3803@
=0.002mm。
DTYPE = 3 : 変位しきい値
w
f
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa
aaleaacaWG0baabeaaaaa@3803@
が、単軸のひずみ軸と応力軟化の始まりの接線の交点に対応する指数損傷 (図 5 )。図 5 . 指数損傷進展を用いた単一ユニット要素の一軸引張試験 .
f
t
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa
aaleaacaWG0baabeaaaaa@3803@
=3.5 MPa、
w
f
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa
aaleaacaWG0baabeaaaaa@3803@
=0.002 mm。
これらの異なる式において、
h
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaaaa@36E1@
はメッシュサイズ依存を避けるために使用できるパラメータです。
IREG =
1 の場合、正規化手法は使用されず、
h
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaaaa@36E1@
が1に設定されます。その場合、限界値
w
f
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa
aaleaacaWGMbaabeaaaaa@3806@
は無次元の限界ひずみとなります。それ以外の場合は、
IREG =
2 の場合、Hillerborgの正規化手法
2 (
Crack Brand法 3 )が使用され、
h
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaaaa@36E1@
は初期要素サイズに等しくなります。すると、限界値
w
f
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa
aaleaacaWGMbaabeaaaaa@3806@
は変位と同質の限界変位になります。Hillerborgの正規化手法は、
G
f
t
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaDa
aaleaacaWGMbaabaGaamiDaaaaaaa@38D0@
で示される引張破壊エネルギーが、どのような要素サイズを用いても一定に保たれるようにするものです(
図 6 )。
図 6 . IREQ = 0(左)、IREQ = 1(右)の2つの異なるメッシュサイズにおける双線形損傷による単軸引張試験。
圧縮損傷に関しては、正規化手法を用いない指数関数的な進展形状のみ有効です(
図 7 )。メッシュサイズ依存性はそれほど敏感ではないと想定されます。
図 7 . 単一ユニット要素の単軸圧縮試験 . ここで、
e
f
c
=
5
×
10
(
−
4
)
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8
qacaWGLbWdamaaBaaaleaapeGaamOzaiaadogaa8aabeaak8qacqGH
9aqpcaaI1aGaaGjbV=aacaqGxdGaaGjbV=qacaaIXaGaaGima8aada
ahaaWcbeqaa8qacaGGOaGaeyOeI0IaaGinaiaacMcaaaaaaa@4461@
応力計算における損傷の影響は、
DFLAG パラメータ値によって異なります:
DFLAG = 1 : 引張から圧縮に切り替わる際の亀裂閉口を考慮し、初期剛性を回復させる非対称軟化。反対に、引張から圧縮に切り替えると、すでにある亀裂が再び開きます。(図 8 )。ここで、
σ
e
f
f
t
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4WdmaaDa
aaleaacaWGLbGaamOzaiaadAgaaeaacaWG0baaaaaa@3B28@
と
σ
e
f
f
c
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4WdmaaDa
aaleaacaWGLbGaamOzaiaadAgaaeaacaWG0baaaaaa@3B28@
はそれぞれ、損傷していない(有効な)応力テンソルの引張部分と圧縮部分です。
図 8 . 非対称損傷軟化を伴う載荷 / 除荷単軸試験
DFLAG = 2 : 引張と圧縮の両方における引張損傷の影響のみを考慮した等方軟化。この場合、亀裂閉口は考慮されません。引張から圧縮、またはその反対に切り替えても、剛性の変化は見られません(図 9 )。また、引張損傷は圧縮での進展は少ないと考えられます。図 9 . 等方性損傷軟化を伴う載荷 / 除荷単軸試験
DFLAG = 3 : 引張と圧縮の両損傷の影響が考慮され、累積される乗法的軟化(図 10 )。図 10 . 乗法的損傷軟化を伴う載荷 / 除荷単軸試験
CDPM2モデルで考慮される最後の現象はひずみ速度依存性です。ひずみ速度が大きい場合、コンクリートは引張または圧縮強度の限界が大きくなる可能性が高くなります。これは以下の式を導入します:
f
t
r
a
t
e
=
α
r
a
t
e
f
t
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaDa
aaleaacaWG0baabaGaamOCaiaadggacaWG0bGaamyzaaaakiabg2da
9iabeg7aHnaaBaaaleaacaWGYbGaamyyaiaadshacaWGLbaabeaaki
aadAgadaWgaaWcbaGaamiDaaqabaaaaa@447A@
、
f
c
r
a
t
e
=
α
r
a
t
e
f
c
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaDa
aaleaacaWGJbaabaGaamOCaiaadggacaWG0bGaamyzaaaakiabg2da
9iabeg7aHnaaBaaaleaacaWGYbGaamyyaiaadshacaWGLbaabeaaki
aadAgadaWgaaWcbaGaam4yaaqabaaaaa@4458@
および
f
t
1
r
a
t
e
=
α
r
a
t
e
f
t
1
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaDa
aaleaacaWG0bGaaGymaaqaaiaadkhacaWGHbGaamiDaiaadwgaaaGc
cqGH9aqpcqaHXoqydaWgaaWcbaGaamOCaiaadggacaWG0bGaamyzaa
qabaGccaWGMbWaaSbaaSqaaiaadshacaaIXaaabeaaaaa@45F0@
DIF(Dynamic Increase Factor)
α
r
a
t
e
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS
baaSqaaiaadkhacaWGHbGaamiDaiaadwgaaeqaaaaa@3B7F@
は以下で計算されます:
ここで、
α
c
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS
baaSqaaiaadogaaeqaaaaa@38A7@
は、コメント3 の損傷履歴変数の式で定義された圧縮係数です。
コンクリートは圧縮よりも引張の方がひずみ速度の影響を受けやすいため、引張と圧縮ではひずみ速度依存性が異なります。引張と圧縮の2つの動的増加係数は次のように計算されます:
α
r
a
t
e
t
=
1
for
ε
˙
max
≤
30
×
10
−
6
s
−
1
ε
˙
ε
˙
t
0
δ
s
for
30
×
10
−
6
s
−
1
<
ε
˙
max
≤
1
s
−
1
β
s
ε
˙
ε
˙
t
0
1
3
for
1
s
−
1
≤
ε
˙
max
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aa0
baaSqaaiaadkhacaWGHbGaamiDaiaadwgaaeaacaWG0baaaOGaeyyp
a0ZaaiqaaeaafaqabeWadaaabaGaaGymaaqaaiaabAgacaqGVbGaae
OCaaqaaiqbew7aLzaacaWaaSbaaSqaaiGac2gacaGGHbGaaiiEaaqa
baGccqGHKjYOcaaIZaGaaGimaiabgEna0kaaigdacaaIWaWaaWbaaS
qabeaacqGHsislcaaI2aaaaOGaae4CamaaCaaaleqabaGaeyOeI0Ia
aGymaaaaaOqaamaabmaabaWaaSaaaeaacuaH1oqzgaGaaaqaaiqbew
7aLzaacaWaaSbaaSqaaiaadshacaaIWaaabeaaaaaakiaawIcacaGL
PaaadaahaaWcbeqaaiabes7aKnaaBaaameaacaWGZbaabeaaaaaake
aacaqGMbGaae4BaiaabkhaaeaacaaIZaGaaGimaiabgEna0kaaigda
caaIWaWaaWbaaSqabeaacqGHsislcaaI2aaaaOGaae4CamaaCaaale
qabaGaeyOeI0IaaGymaaaakiabgYda8iqbew7aLzaacaWaaSbaaSqa
aiGac2gacaGGHbGaaiiEaaqabaGccqGHKjYOcaaIXaGaae4CamaaCa
aaleqabaGaeyOeI0IaaGymaaaaaOqaaiabek7aInaaBaaaleaacaWG
ZbaabeaakmaabmaabaWaaSaaaeaacuaH1oqzgaGaaaqaaiqbew7aLz
aacaWaaSbaaSqaaiaadshacaaIWaaabeaaaaaakiaawIcacaGLPaaa
daahaaWcbeqaamaaliaabaGaaGymaaqaaiaaiodaaaaaaaGcbaGaae
Ozaiaab+gacaqGYbaabaGaaGymaiaabohadaahaaWcbeqaaiabgkHi
TiaaigdaaaGccqGHKjYOcuaH1oqzgaGaamaaBaaaleaaciGGTbGaai
yyaiaacIhaaeqaaaaaaOGaay5Eaaaaaa@8C22@
ここで、
δ
s
=
1
1
+
8
f
c
f
c
0
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS
baaSqaaiaadohaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGym
aiabgUcaRiaaiIdadaWccaqaaiaadAgadaWgaaWcbaGaam4yaaqaba
aakeaacaWGMbWaaSbaaSqaaiaadogacaaIWaaabeaaaaaaaaaa@41CB@
。
log
β
s
=
6
δ
s
−
2
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+
gacaGGNbGaeqOSdi2aaSbaaSqaaiaadohaaeqaaOGaeyypa0JaaGOn
aiabes7aKnaaBaaaleaacaWGZbaabeaakiabgkHiTiaaikdaaaa@41D5@
α
r
a
t
e
c
=
1
for
ε
˙
max
≤
30
×
10
−
6
s
−
1
ε
˙
ε
˙
c
0
1.026
α
s
for
30
×
10
−
6
s
−
1
<
ε
˙
max
≤
30
s
−
1
γ
s
ε
˙
ε
˙
c
0
1
3
for
30s
−
1
≤
ε
˙
max
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aa0
baaSqaaiaadkhacaWGHbGaamiDaiaadwgaaeaacaWGJbaaaOGaeyyp
a0ZaaiqaaeaafaqabeWadaaabaGaaGymaaqaaiaabAgacaqGVbGaae
OCaaqaaiqbew7aLzaacaWaaSbaaSqaaiGac2gacaGGHbGaaiiEaaqa
baGccqGHKjYOcaaIZaGaaGimaiabgEna0kaaigdacaaIWaWaaWbaaS
qabeaacqGHsislcaaI2aaaaOGaae4CamaaCaaaleqabaGaeyOeI0Ia
aGymaaaaaOqaamaabmaabaWaaSaaaeaacuaH1oqzgaGaaaqaaiqbew
7aLzaacaWaaSbaaSqaaiaadogacaaIWaaabeaaaaaakiaawIcacaGL
PaaadaahaaWcbeqaaiaaigdacaGGUaGaaGimaiaaikdacaaI2aGaeq
ySde2aaSbaaWqaaiaadohaaeqaaaaaaOqaaiaabAgacaqGVbGaaeOC
aaqaaiaaiodacaaIWaGaey41aqRaaGymaiaaicdadaahaaWcbeqaai
abgkHiTiaaiAdaaaGccaqGZbWaaWbaaSqabeaacqGHsislcaaIXaaa
aOGaeyipaWJafqyTduMbaiaadaWgaaWcbaGaciyBaiaacggacaGG4b
aabeaakiabgsMiJkaaiodacaaIWaGaae4CamaaCaaaleqabaGaeyOe
I0IaaGymaaaaaOqaaiabeo7aNnaaBaaaleaacaWGZbaabeaakmaabm
aabaWaaSaaaeaacuaH1oqzgaGaaaqaaiqbew7aLzaacaWaaSbaaSqa
aiaadogacaaIWaaabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaam
aaliaabaGaaGymaaqaaiaaiodaaaaaaaGcbaGaaeOzaiaab+gacaqG
YbaabaGaae4maiaabcdacaqGZbWaaWbaaSqabeaacqGHsislcaaIXa
aaaOGaeyizImQafqyTduMbaiaadaWgaaWcbaGaciyBaiaacggacaGG
4baabeaaaaaakiaawUhaaaaa@90FC@
ここで、
α
s
=
1
5
+
9
f
c
f
c
0
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS
baaSqaaiaadohaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGyn
aiabgUcaRiaaiMdadaWccaqaaiaadAgadaWgaaWcbaGaam4yaaqaba
aakeaacaWGMbWaaSbaaSqaaiaadogacaaIWaaabeaaaaaaaaaa@41CA@
。
log
γ
s
=
6.56
α
s
−
2
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+
gacaGGNbGaeq4SdC2aaSbaaSqaaiaadohaaeqaaOGaeyypa0JaaGOn
aiaac6cacaaI1aGaaGOnaiabeg7aHnaaBaaaleaacaWGZbaabeaaki
abgkHiTiaaikdaaaa@4406@
等価ひずみ速度の偏差
ε
˙
は、上記の式でDIFを計算するために使用されます。
ひずみ速度の影響については、パラメータを特定する必要はありません。フラグ
IRATE を
2 に設定するだけです。
図 11 は、CDPM2の挙動に対するひずみ速度の影響が予想される傾向を示しています。実験でよく見られるように、引張/圧縮の強度限界を上げることで、破壊時の散逸エネルギーも影響を受けます。
図 11 . ひずみ速度依存性を有する引張/圧縮単軸試験 (IRATE = 1)
偏心値のデフォルト値は次のようにして得られます:
ε
i
=
f
t
1.16
f
c
2
−
f
c
2
1.16
f
c
f
c
2
−
f
t
2
MathType@MTEF@5@5@+=
feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS
baaSqaaiaadMgaaeqaaOGaeyypa0ZaaSaaaeaacaWGMbWaaSbaaSqa
aiaadshaaeqaaOWaaeWaaeaadaqadaqaaiaaigdacaGGUaGaaGymai
aaiAdacaWGMbWaaSbaaSqaaiaadogaaeqaaaGccaGLOaGaayzkaaWa
aWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamOzamaaDaaaleaacaWGJb
aabaGaaGOmaaaaaOGaayjkaiaawMcaaaqaaiaaigdacaGGUaGaaGym
aiaaiAdacaWGMbWaaSbaaSqaaiaadogaaeqaaOWaaeWaaeaacaWGMb
Waa0baaSqaaiaadogaaeaacaaIYaaaaOGaeyOeI0IaamOzamaaDaaa
leaacaWG0baabaGaaGOmaaaaaOGaayjkaiaawMcaaaaaaaa@559B@
および
e
c
c
=
1
+
ε
i
2
−
ε
i
MathType@MTEF@5@5@+=
feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9
vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x
fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa
aaleaacaWGJbGaam4yaaqabaGccqGH9aqpdaWcaaqaaiaaigdacqGH
RaWkcqaH1oqzdaWgaaWcbaGaamyAaaqabaaakeaacaaIYaGaeyOeI0
IaeqyTdu2aaSbaaSqaaiaadMgaaeqaaaaaaaa@42CC@
引張破壊エネルギー、
G
f
t
はモデルの入力として直接使用されませんが、破壊時の引張非弾性変位/ひずみの値を計算するために使用されます。
w
f
。線形軟化則(DTYPE = 1 )の場合、引張破壊エネルギーは次のようになります:
w
f
=
2
G
f
t
f
t
(IREG = 2 の場合、デフォルト)
w
f
=
2
G
f
t
h
f
t
(IREG = 1 の場合、h = 識別のための基準要素サイズ)
双線形軟化則(DTYPE = 2 )の場合、引張破壊エネルギーは次のようになります:
G
f
t
=
f
t
w
f
1
2
+
σ
1
w
f
2
仮に
σ
1
/
f
t
= 0.3であり
w
f
1
/
w
f
= 0.15の場合以下のようになります:
w
f
=
G
f
t
0
.
225
f
t
(IREG = 2 の場合、デフォルト)
w
f
=
G
f
t
0
.
225
f
t
h
(IREG = 1 の場合、h = 識別のための基準要素サイズ
圧縮破壊エネルギー、
G
f
c
はモデルの入力として直接使用されませんが、破壊に近い圧縮非弾性ひずみの値を計算するために使用されます:
ε
f
c
=
G
f
c
f
c
h
A
s
このとき、h = 識別のための基準要素サイズ、および
A
s
は延性の尺度です:
x
s
=
1
+
A
s
-
1
R
s
B
S
全体損傷変数は、/ANIM/BRICK/DAMG または/HED/SOLID/DAMG を使用して出力されます。