/MAT/LAW92
Block Format Keyword This law describes the Arruda-Boyce material model, which can be used to model hyperelastic behavior.
A stress versus strain curve can be defined as an input function in order to determine the material parameters by fitting this curve. This law is only compatible with solid elements.
Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/MAT/LAW92/mat_ID/unit_ID | |||||||||
mat_title | |||||||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
D |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
Itype | fct_ID | Fscale |
Definition
Field | Contents | SI Unit Example |
---|---|---|
mat_ID | Material identifier. (Integer, maximum 10 digits) |
|
unit_ID | Unit Identifier. (Integer, maximum 10 digits) |
|
mat_title | Material title. (Character, maximum 100 characters) |
|
Initial density. (Real) |
||
Shear modulus. Used only if fct_ID is not defined. (Real) |
||
D | Material parameter. If null, D is automatically computed from , and =0.495. 2 Used only if fct_ID is not defined. (Real) |
|
The limit of stretch. Used only if fct_ID is not defined. Default = 7.0 (Real) |
||
Itype | Test data type (stress strain curve).
(Integer) |
|
fct_ID | Function identifier defining engineer
stress versus engineer strain. (Integer) |
|
Poisson's ratio. Used only if fct_ID is defined. Default = 0.495 (Real) |
||
Fscale | Scale factor for ordinate (stress) in
function fct_ID. Default = 1.0 (Real) |
Example (Rubber with Parameter Input)
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
Mg mm s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW92/1/1
Generic RUBBER
# RHO_I
1E-09
# mu D LAM
5 .05 100
# IType fct_ID NU Fscale
0 0 0 0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
Example (Rubber with Function Input)
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
Mg mm s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW92/1/1
rubber
# RHO_I
1.000E-9
# mu D LAM
# IType fct_ID NU Fscale
1 2 0.495
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/2
LAW92 e.strain vs e.stress from uniaxial test(IType=1)
# X Y
0 0
.03 .30
.06 .55
.10 .80
.20 1.4
.30 2.0
.50 2.7
.70 3.4
1.0 4.0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
Comments
- The Arruda-Boyce energy density.
With
and
with
The Cauchy stress is computed as:
- If the stress strain curve,
fct_ID is not defined, the material parameters in line 3,
,
and
must be defined and the line 4 input is not used.
Ground shear modulus is computed as:
If is not defined, the bulk modulus is calculated as:
Where, and .
If is defined, the formula should be , and the Poisson ratio is updated with .Note: For positive values of shear modulus, , and Limit of stretch, , this model is always stable. - If the stress strain curve,
fct_ID, is defined then the line 3 input parameters
,
and
are ignored and are automatically identified by fitting of
the provided stress versus strain curve.
A nonlinear least squares algorithm is used to fit the Arruda-Boyce parameters. The model is fully incompressible in fitting the Arruda-Boyce constants to the test data, except in the volumetric test.
Where E is relative error. The material constants are obtained using a least-squares-fit procedure to minimize the relative error between the theoretical nominal stress and given experimental data.
Where, is a stress value from the test data and is the theoretical nominal stress given by for each engineer strain i.
The nominal stress is computed for each mode assuming the full incompressibility:- Uniaxial Mode:
So
- Equibiaxial Mode:
So
- Planar (Shear Mode):
So
- Uniaxial Mode:
- /VISC/PRONY must be used with LAW92 to include viscous effects.