RD-E:4701 Kupfer試験でのコンクリートの検証 Kupfer試験でのコンクリートの検証 Radiossはコンクリートの圧縮と引張り下の破壊をモデル化する材料モデルLAW24およびLAW81を含んでいます。この例題では、シミュレーション結果は実験データと比較されます。図 1. 使用されるオプションとキーワード コンクリート材料則(/MAT/LAW24 (CONC)、/MAT/LAW81) 3次元ソリッド要素 ソリッドプロパティ(/PROP/TYPE14(SOLID)) 境界条件(/BCS) 強制変位(/IMPDISP) 強制速度(/IMPVEL) 圧力荷重(/PLOAD) 入力ファイル Before you begin, copy the file(s) used in this example to your working directory. RD-E-4701_Kupfer.zip モデル概要 10mmのコンクリートの立方体が、実験と同じ境界条件の1つの3次元要素を使ってモデル化されます。図 2. 立方体の形状 安定性の理由から、1つの要素モデルは時間ステップスケールファクター0.1を使用する必要があります。 ソリッドのプロパティは: qa = 1.1およびqb= 0.05(デフォルト値) Isolid= 24 Iframe= 2(共回転定式化) Istrain= 1(ポストでのひずみの取り扱いのため) この例題では、2つの材料則/MAT/LAW24および/MAT/LAW81が実験データと比較されます。 以下の単位系が用いられます: mm、ms、g、MPa 使用される材料データ1: コンクリート材料則(/MAT/LAW24) 初期密度 0.0022 [ g m m 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaai4zaaqaaiaac2gacaGGTbWaaWbaaSqabeaacaaIZaaa aaaaaOGaay5waiaaw2faaaaa@3D2B@ コンクリート弾性のヤング率 E c = 31700 [ MPa ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaadogaaeqaaOGaeyypa0JaaG4maiaaigdacaaI3aGaaGim aiaaicdacaGGBbGaciytaiaaccfacaGGHbGaciyxaaaa@4251@ ポアソン比 ν = 0.22 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcq GH9aqpcaaIWaGaaiOlaiaaikdacaaIYaaaaa@3D0A@ 硬化パラメータのコンクリート塑性初期値 k y = 0.35 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGRbWaaS baaSqaaiaadMhaaeqaaOGaeyypa0JaaGimaiaac6cacaaIZaGaaGyn aaaa@3D7A@ コンクリート塑性の降伏時ダイタランシー係数 α y = − 0.6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8 qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9 pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiabeg7aHnaaBaaaleaacaWG5baabeaakiabg2da9iabgkHiTiaa icdacaGGUaGaaGOnaaaa@4047@ コンクリート塑性の破壊時ダイタランシー係数 α f = 0.2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8 qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9 pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiabeg7aHnaaBaaaleaacaWGMbaabeaakiabg2da9iaaicdacaGG UaGaaGOmaaaa@3F43@ Kupfer実験データから読み出されたデータ コンクリートの単軸圧縮強度 f c =32.22[MPa] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8 qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9 pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadAgadaWgaaWcbaGaam4yaaqabaGccqGH9aqpcaaIZaGaaGOm aiaac6cacaaIYaGaaGOmaiaacUfaciGGnbGaaiiuaiaacggaciGGDb aaaa@4455@ コンクリートの単軸引張強度 0.01 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ 、そこで右記に設定; f t f c = 0.1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8 qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9 pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaO qaamaaliaabaGaamOzamaaBaaaleaacaWG0baabeaaaOqaaiaadAga daWgaaWcbaGaam4yaaqabaaaaOGaeyypa0JaaGimaiaac6cacaaIXa aaaa@40B7@ (LAW24でのデフォルト=0.1) コンクリートの2軸強度 1.15 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ 、そこで右記に設定; f b f c = 1.15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8 qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9 pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaO qaamaaliaabaGaamOzamaaBaaaleaacaWGIbaabeaaaOqaaiaadAga daWgaaWcbaGaam4yaaqabaaaaOGaeyypa0JaaGymaiaac6cacaaIXa GaaGynaaaa@4165@ その他のパラメータはLAW24でのデフォルトのままとして構いません。なぜならば、これらのデフォルト値は一般的なコンクリート材料の代表的な値であるためです。 コンクリート材料則(/MAT/LAW81) 初期密度 0.0022 [ g m m 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaai4zaaqaaiaac2gacaGGTbWaaWbaaSqabeaacaaIZaaa aaaaaOGaay5waiaaw2faaaaa@3D2B@ 体積弾性率 K = E c 3 ( 1 − 2 ν ) = 18869 .048[MPa] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbGaey ypa0ZaaSaaaeaacaWGfbWaaSbaaSqaaiaadogaaeqaaaGcbaGaaG4m amaabmaabaGaaGymaiabgkHiTiaaikdacqaH9oGBaiaawIcacaGLPa aaaaGaeyypa0JaaeymaiaabIdacaqG4aGaaeOnaiaabMdacaqGUaGa aeimaiaabsdacaqG4aGaae4waiaab2eacaqGqbGaaeyyaiaab2faaa a@4D58@ ヤング率 E c = 31700 [ MPa ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaadogaaeqaaOGaeyypa0JaaG4maiaaigdacaaI3aGaaGim aiaaicdacaGGBbGaciytaiaaccfacaGGHbGaciyxaaaa@4251@ ポアソン比 ν = 0.22 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcq GH9aqpcaaIWaGaaiOlaiaaikdacaaIYaaaaa@3D0A@ せん断係数 G = E c 2 ( 1 + ν ) = 12991 .8[MPa] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbGaey ypa0ZaaSaaaeaacaWGfbWaaSbaaSqaaiaadogaaeqaaaGcbaGaaGOm amaabmaabaGaaGymaiabgUcaRiabe27aUbGaayjkaiaawMcaaaaacq GH9aqpcaqGXaGaaeOmaiaabMdacaqG5aGaaeymaiaab6cacaqG4aGa ae4waiaab2eacaqGqbGaaeyyaiaab2faaaa@4B18@ 下記のデータは、入力ファイルに含まれるComposeComposeスクリプトを用いて実験データにカーブフィッティングさせることによって計算されました。 摩擦角 ϕ = 68 .35 ∘ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzcq GH9aqpcaqG2aGaaeioaiaab6cacaqGZaGaaeynamaaCaaaleqabaGa eSigI8gaaaaa@3F30@ 比率 α = 0 .4186898 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqycq GH9aqpcaqGWaGaaeOlaiaabsdacaqGXaGaaeioaiaabAdacaqG4aGa aeyoaiaabIdaaaa@4082@ 一定に設定されたcap制限圧力 P b = 0.838 , f c =27 [MPa] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaadkgaaeqaaOGaeyypa0JaaGimaiaac6cacaaI4aGaaG4m aiaaiIdacaqGSaGaaeiiaiaaykW7caWGMbWaaSbaaSqaaiaadogaae qaaOGaaeypaiaabkdacaqG3aGaaeiiaiaabUfacaqGnbGaaeiuaiaa bggacaqGDbaaaa@4A0A@ cap開始圧力 P a = α ⋅ P b =0 .351, f c = 11.305 [MPa] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaadggaaeqaaOGaeyypa0JaeqySdeMaeyyXICTaamiuamaa BaaaleaacaWGIbaabeaakiaab2dacaqGWaGaaeOlaiaabodacaqG1a GaaeymaiaabYcacaqGGaGaaGPaVlaadAgadaWgaaWcbaGaam4yaaqa baGccqGH9aqpcaaIXaGaaGymaiaac6cacaaIZaGaaGimaiaaiwdaca qGGaGaae4waiaab2eacaqGqbGaaeyyaiaab2faaaa@53B2@ 一定に設定された材料粘着力 c = 0.169175 , f c = 5.4508 [MPa] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbGaey ypa0JaaGimaiaac6cacaaIXaGaaGOnaiaaiMdacaaIXaGaaG4naiaa iwdacaqGSaGaaeiiaiaaykW7caWGMbWaaSbaaSqaaiaadogaaeqaaO Gaeyypa0JaaGynaiaac6cacaaI0aGaaGynaiaaicdacaaI4aGaaeii aiaabUfacaqGnbGaaeiuaiaabggacaqGDbaaaa@4E79@ 注: この例では、応力は f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ によってスケーリングされています。コンクリート材料について一般的に行われるのは、圧縮で圧力を正に定義することです。したがって、応力は引張で負となります。 シミュレーションの反復 この例題の目的はシミュレーション結果をKupfer 2試験からの実験データと比較することです。 表 1. 荷重と破壊 試験 主応力 軸性 破壊応力 T000 単軸引張 σ 1 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaaa@3CF6@ ; σ 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaaa@3CF6@ ; σ 3 = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaaa@3CF6@ 1/3 0.1 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ C000 単軸圧縮 σ 1 = − 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE4@ ; σ 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaaa@3CF6@ ; σ 3 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaaa@3CF6@ -1/3 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ CC002軸圧縮 σ 1 = − 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE4@ ; σ 2 = − 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE5@ ; σ 3 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaaa@3CF6@ -2/3 1.15 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ CC01圧縮 / 圧縮 σ 1 = − 0.052 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGim aiaac6cacaaI1aGaaGOmaaaa@4010@ ; σ 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE5@ ; σ 3 = − 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE6@ -0.5849 1.22 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ TC01圧縮 / 引張 σ 1 = 0.052 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGim aiaac6cacaaI1aGaaGOmaaaa@4010@ ; σ 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE5@ ; σ 3 = − 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE6@ -0.3077 0.8 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ TC02圧縮 / 引張 σ 1 = 0.102 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGim aiaac6cacaaI1aGaaGOmaaaa@4010@ ; σ 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE5@ ; σ 3 = − 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE6@ -0.2838 0.6 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ TC03圧縮 / 引張 σ 1 = 0.204 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGim aiaac6cacaaI1aGaaGOmaaaa@4010@ ; σ 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE5@ ; σ 3 = − 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE6@ -0.2377 0.35 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ 軸性は、主応力を使って計算されます: σ * = σ m σ V M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaCaaaleqabaWdbiaacQcaaaGccqGH9aqpdaWcaaWd aeaapeGaae4Wd8aadaWgaaWcbaWdbiaad2gaa8aabeaaaOqaa8qacq aHdpWCpaWaaSbaaSqaa8qacaWGwbGaamytaaWdaeqaaaaaaaa@4081@ ここで、 σ m = p = 1 3 ( σ 1 + σ 2 + σ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Wd8aadaWgaaWcbaWdbiaad2gaa8aabeaakiabg2da9iaadcha peGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaiodaaaWaae Waa8aabaWdbiaabo8apaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa ey4kaSIaae4Wd8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHRa WkcaqGdpWdamaaBaaaleaapeGaaG4maaWdaeqaaaGcpeGaayjkaiaa wMcaaaaa@4858@ および σ V M = 1 2 [ ( σ 1 − σ 2 ) 2 + ( σ 2 − σ 3 ) 2 + ( σ 3 − σ 1 ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Wd8aadaWgaaWcbaWdbiaadAfacaWGnbaapaqabaGcpeGaeyyp a0ZaaOaaa8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIYa aaamaadmaapaqaa8qadaqadaWdaeaapeGaae4Wd8aadaWgaaWcbaWd biaaigdaa8aabeaak8qacqGHsislcaqGdpWdamaaBaaaleaapeGaaG OmaaWdaeqaaaGcpeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI YaaaaOGaey4kaSYaaeWaa8aabaWdbiaabo8apaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyOeI0Iaae4Wd8aadaWgaaWcbaWdbiaaioda a8aabeaaaOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaa aakiabgUcaRmaabmaapaqaa8qacaqGdpWdamaaBaaaleaapeGaaG4m aaWdaeqaaOWdbiabgkHiTiaabo8apaWaaSbaaSqaa8qacaaIXaaapa qabaaak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaa kiaawUfacaGLDbaaaSqabaaaaa@5A1B@ 図 3 は、 σ VM versus p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiabeo8aZnaaBaaaleaacaWGwbGaamytaaqabaGccaqGGaqcaaIa aeODaiaabwgacaqGYbGaae4CaiaabwhacaqGZbGccaqGGaGaamiCaa aa@4617@ 応力空間でのコンクリート材料実験破壊応力( f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ によりスケーリング)を示しています。図 3. 実験データ(フォンミーゼス / 圧力曲線) 結果 LAW24およびLAW81での破壊結果 LAW24での破壊曲線は: r f = 1 a ( b + b 2 − a ( σ m − c ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOCamaaBaaaleaacaWGMbaabeaakiabg2da9maalaaabaGaaGym aaqaaiaadggaaaGaaiikaiaadkgacqGHRaWkdaGcaaqaaiaadkgada ahaaWcbeqaaiaaikdaaaGccqGHsislcaWGHbGaaiikaiabeo8aZnaa BaaaleaacaWGTbaabeaakiabgkHiTiaadogacaGGPaaaleqaaaaa@49A7@ ここで、 b = 1 2 ( b c + b t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOyaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaaiikaiaa dkgadaWgaaWcbaGaam4yaaqabaGccqGHRaWkcaWGIbWaaSbaaSqaai aadshaaeqaaOGaaiykaaaa@424C@ Radiossは異なる強度入力 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ 、 f t f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8 qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9 pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaO qaamaaliaabaGaamOzamaaBaaaleaacaWG0baabeaaaOqaaiaadAga daWgaaWcbaGaam4yaaqabaaaaaaa@3D80@ を使ってカーブフィッティングを行い、式 2、 r f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8 qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9 pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadkhadaWgaaWcbaGaamOzaaqabaaaaa@3B63@ 破壊曲線(緑色)を得ます。図 4. 実験データとLAW24解析データ(フォンミーゼス / 圧力曲線) LAW81では破壊曲線と降伏曲線は同じで、下記の2つのパートに描写されます: p ≤ P a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWbGaey izImQaamiuamaaBaaaleaacaWGHbaabeaaaaa@3BF9@ 右記で線形; p tan ϕ + c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWbGaci iDaiaacggacaGGUbGaeqy1dyMaey4kaSIaam4yaaaa@3EC0@ 破壊は σ m tan ( 68.35 ∘ ) + 5.4508 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda WgaaWcbaGaamyBaaqabaGcciGG0bGaaiyyaiaac6gacaGGOaGaaGOn aiaaiIdacaGGUaGaaG4maiaaiwdadaahaaWcbeqaaiablIHiVbaaki aacMcacqGHRaWkcaaI1aGaaiOlaiaaisdacaaI1aGaaGimaiaaiIda aaa@48EA@ P a < p ≤ P b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaadggaaeqaaOGaeyipaWJaamiCaiabgsMiJkaadcfadaWg aaWcbaGaamOyaaqabaaaaa@3EEF@ (cap)cap曲線は: 1 − ( p − p a p b − p a ) 2 ⋅ ( p tan ϕ + c ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca aIXaGaeyOeI0YaaeWaaeaadaWcaaqaaiaadchacqGHsislcaWGWbWa aSbaaSqaaiaadggaaeqaaaGcbaGaamiCamaaBaaaleaacaWGIbaabe aakiabgkHiTiaadchadaWgaaWcbaGaamyyaaqabaaaaaGccaGLOaGa ayzkaaWaaWbaaSqabeaacaaIYaaaaaqabaGccqGHflY1daqadaqaai aadchaciGG0bGaaiyyaiaac6gacqaHvpGzcqGHRaWkcaWGJbaacaGL OaGaayzkaaaaaa@4E68@ 破壊は: 1− ( σ m −27 27−11.305 ) 2 ⋅ σ m ⋅tan( 68.35 ∘ )+5.4508 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGcaaqaai aaigdacqGHsisldaqadaqaamaalaaabaGaeq4Wdm3aaSbaaSqaaiaa d2gaaeqaaOGaeyOeI0IaaGOmaiaaiEdaaeaacaaIYaGaaG4naiabgk HiTiaaigdacaaIXaGaaiOlaiaaiodacaaIWaGaaGynaaaaaiaawIca caGLPaaadaahaaWcbeqaaiaaikdaaaaabeaakiabgwSixlabeo8aZn aaBaaaleaacaWGTbaabeaakiabgwSixlGacshacaGGHbGaaiOBaiaa cIcacaaI2aGaaGioaiaac6cacaaIZaGaaGynamaaCaaaleqabaGaeS igI8gaaOGaaiykaiabgUcaRiaaiwdacaGGUaGaaGinaiaaiwdacaaI WaGaaGioaaaa@5DDF@ LAW81の場合のこれら破壊曲線の2つのパートは:図 5. 実験データとLAW81解析データ(フォンミーゼス / 圧力曲線) 異なる荷重経路(Kupfer 試験より)におけるLAW24およびLAW81での破壊結果は次のように示されます:図 6. LAW24解析およびシミュレーション結果(荷重経路)(フォンミーゼス / 圧力曲線) 図 7. LAW81解析およびシミュレーション結果(荷重経路)(フォンミーゼス / 圧力曲線) LAW24破壊結果とLAW81破壊結果を実験データと比較すると、LAW81結果はLAW24よりも良好です。図 8. 実験データとLAW24 Radiossデータ(フォンミーゼス / 圧力曲線) 図 9. 実験データとLAW81 Radiossデータ(フォンミーゼス / 圧力曲線) LAW81の破壊結果は、cap領域においてさえも実験データと合致します。LAW24結果については、ほとんどが解析結果と良好に一致しています; CC00以外は解析曲線とやや大きな差異が見られますが、実験データとほぼ同じです。下に示すCC00応力-ひずみ図は、ほとんど同じ破壊応力を示しています。図 10. CC00実験データとLAW24 Radioss結果 コンクリート引張試験の結果 コンクリートは引張では荷重をあまりサポートしません。LAW24では、単軸引張破壊(応力によってモデル化)および弾性係数の軟化の挙動は H t , D sup , ε max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisamaaBaaaleaacaWG0baabeaakiaacYcacaaMi8UaaGPaVlaa dseapaWaaSbaaSqaa8qaciGGZbGaaiyDaiaacchaa8aabeaakiaacY cacqaH1oqzdaWgaaWcbaGaciyBaiaacggacaGG4baabeaaaaa@453D@ によって定義されます。軟化係数 H t = − E c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGibWaaS baaSqaaiaadshaaeqaaOGaeyypa0JaeyOeI0IaamyramaaBaaaleaa caWGJbaabeaaaaa@3C2B@ (デフォルト)が引張の場合設定されます。上記の曲線のピークは、入力において f t f c = 0.1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWccaqaai aadAgadaWgaaWcbaGaamiDaaqabaaakeaacaWGMbWaaSbaaSqaaiaa dogaaeqaaaaakiabg2da9iaaicdacaGGUaGaaGymaaaa@3DC0@ (デフォルト)で定義されている0.1です。 LAW81では、引張と圧縮に同じ体積弾性率とせん断係数が使用されます。LAW24では、 E = ( 1 − D sup ) ⋅ E c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbGaey ypa0ZaaeWaaeaacaaIXaGaeyOeI0IaamiramaaBaaaleaaciGGZbGa aiyDaiaacchaaeqaaaGccaGLOaGaayzkaaGaeyyXICTaamyramaaBa aaleaacaWGJbaabeaaaaa@436C@ を用いて軟化後のコンクリートでの残りの剛性を表すことができます。これはLAW81では不可能です。図 11. 単軸引張T000実験データとRadioss(LAW24およびLAW81)結果 まとめ 複雑な荷重下で、コンクリートの破壊の挙動が2つのRadioss材料モデルLAW24およびLAW81を用いて示され、結果が実験と比較されました。LAW24の場合、実験データが入手できなければ、デフォルト値が良好な選択肢です。LAW81の場合、材料パラメータ ϕ , c , α , P b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzca GGSaGaam4yaiaacYcacqaHXoqycaGGSaGaamiuamaaBaaaleaacaWG Ibaabeaaaaa@3FAF@ は、少なくとも4つの実験試験を用いたカーブフィッティングで計算される必要があります。 参考文献 1 Han, D. J., and Wai-Fah Chen."A nonuniform hardening plasticity model for concrete materials."Mechanics of materials 4, no. 3-4 (1985): 283-3022 Kupfer, Helmut B., and Kurt H. Gerstle."Behavior of concrete under biaxial stresses."Journal of the Engineering Mechanics Division 99, no. 4 (1973): 853-866
RD-E:4701 Kupfer試験でのコンクリートの検証 Kupfer試験でのコンクリートの検証 Radiossはコンクリートの圧縮と引張り下の破壊をモデル化する材料モデルLAW24およびLAW81を含んでいます。この例題では、シミュレーション結果は実験データと比較されます。図 1. 使用されるオプションとキーワード コンクリート材料則(/MAT/LAW24 (CONC)、/MAT/LAW81) 3次元ソリッド要素 ソリッドプロパティ(/PROP/TYPE14(SOLID)) 境界条件(/BCS) 強制変位(/IMPDISP) 強制速度(/IMPVEL) 圧力荷重(/PLOAD) 入力ファイル Before you begin, copy the file(s) used in this example to your working directory. RD-E-4701_Kupfer.zip モデル概要 10mmのコンクリートの立方体が、実験と同じ境界条件の1つの3次元要素を使ってモデル化されます。図 2. 立方体の形状 安定性の理由から、1つの要素モデルは時間ステップスケールファクター0.1を使用する必要があります。 ソリッドのプロパティは: qa = 1.1およびqb= 0.05(デフォルト値) Isolid= 24 Iframe= 2(共回転定式化) Istrain= 1(ポストでのひずみの取り扱いのため) この例題では、2つの材料則/MAT/LAW24および/MAT/LAW81が実験データと比較されます。 以下の単位系が用いられます: mm、ms、g、MPa 使用される材料データ1: コンクリート材料則(/MAT/LAW24) 初期密度 0.0022 [ g m m 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaai4zaaqaaiaac2gacaGGTbWaaWbaaSqabeaacaaIZaaa aaaaaOGaay5waiaaw2faaaaa@3D2B@ コンクリート弾性のヤング率 E c = 31700 [ MPa ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaadogaaeqaaOGaeyypa0JaaG4maiaaigdacaaI3aGaaGim aiaaicdacaGGBbGaciytaiaaccfacaGGHbGaciyxaaaa@4251@ ポアソン比 ν = 0.22 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcq GH9aqpcaaIWaGaaiOlaiaaikdacaaIYaaaaa@3D0A@ 硬化パラメータのコンクリート塑性初期値 k y = 0.35 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGRbWaaS baaSqaaiaadMhaaeqaaOGaeyypa0JaaGimaiaac6cacaaIZaGaaGyn aaaa@3D7A@ コンクリート塑性の降伏時ダイタランシー係数 α y = − 0.6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8 qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9 pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiabeg7aHnaaBaaaleaacaWG5baabeaakiabg2da9iabgkHiTiaa icdacaGGUaGaaGOnaaaa@4047@ コンクリート塑性の破壊時ダイタランシー係数 α f = 0.2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8 qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9 pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiabeg7aHnaaBaaaleaacaWGMbaabeaakiabg2da9iaaicdacaGG UaGaaGOmaaaa@3F43@ Kupfer実験データから読み出されたデータ コンクリートの単軸圧縮強度 f c =32.22[MPa] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8 qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9 pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadAgadaWgaaWcbaGaam4yaaqabaGccqGH9aqpcaaIZaGaaGOm aiaac6cacaaIYaGaaGOmaiaacUfaciGGnbGaaiiuaiaacggaciGGDb aaaa@4455@ コンクリートの単軸引張強度 0.01 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ 、そこで右記に設定; f t f c = 0.1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8 qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9 pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaO qaamaaliaabaGaamOzamaaBaaaleaacaWG0baabeaaaOqaaiaadAga daWgaaWcbaGaam4yaaqabaaaaOGaeyypa0JaaGimaiaac6cacaaIXa aaaa@40B7@ (LAW24でのデフォルト=0.1) コンクリートの2軸強度 1.15 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ 、そこで右記に設定; f b f c = 1.15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8 qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9 pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaO qaamaaliaabaGaamOzamaaBaaaleaacaWGIbaabeaaaOqaaiaadAga daWgaaWcbaGaam4yaaqabaaaaOGaeyypa0JaaGymaiaac6cacaaIXa GaaGynaaaa@4165@ その他のパラメータはLAW24でのデフォルトのままとして構いません。なぜならば、これらのデフォルト値は一般的なコンクリート材料の代表的な値であるためです。 コンクリート材料則(/MAT/LAW81) 初期密度 0.0022 [ g m m 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaai4zaaqaaiaac2gacaGGTbWaaWbaaSqabeaacaaIZaaa aaaaaOGaay5waiaaw2faaaaa@3D2B@ 体積弾性率 K = E c 3 ( 1 − 2 ν ) = 18869 .048[MPa] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbGaey ypa0ZaaSaaaeaacaWGfbWaaSbaaSqaaiaadogaaeqaaaGcbaGaaG4m amaabmaabaGaaGymaiabgkHiTiaaikdacqaH9oGBaiaawIcacaGLPa aaaaGaeyypa0JaaeymaiaabIdacaqG4aGaaeOnaiaabMdacaqGUaGa aeimaiaabsdacaqG4aGaae4waiaab2eacaqGqbGaaeyyaiaab2faaa a@4D58@ ヤング率 E c = 31700 [ MPa ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaadogaaeqaaOGaeyypa0JaaG4maiaaigdacaaI3aGaaGim aiaaicdacaGGBbGaciytaiaaccfacaGGHbGaciyxaaaa@4251@ ポアソン比 ν = 0.22 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcq GH9aqpcaaIWaGaaiOlaiaaikdacaaIYaaaaa@3D0A@ せん断係数 G = E c 2 ( 1 + ν ) = 12991 .8[MPa] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbGaey ypa0ZaaSaaaeaacaWGfbWaaSbaaSqaaiaadogaaeqaaaGcbaGaaGOm amaabmaabaGaaGymaiabgUcaRiabe27aUbGaayjkaiaawMcaaaaacq GH9aqpcaqGXaGaaeOmaiaabMdacaqG5aGaaeymaiaab6cacaqG4aGa ae4waiaab2eacaqGqbGaaeyyaiaab2faaaa@4B18@ 下記のデータは、入力ファイルに含まれるComposeComposeスクリプトを用いて実験データにカーブフィッティングさせることによって計算されました。 摩擦角 ϕ = 68 .35 ∘ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzcq GH9aqpcaqG2aGaaeioaiaab6cacaqGZaGaaeynamaaCaaaleqabaGa eSigI8gaaaaa@3F30@ 比率 α = 0 .4186898 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqycq GH9aqpcaqGWaGaaeOlaiaabsdacaqGXaGaaeioaiaabAdacaqG4aGa aeyoaiaabIdaaaa@4082@ 一定に設定されたcap制限圧力 P b = 0.838 , f c =27 [MPa] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaadkgaaeqaaOGaeyypa0JaaGimaiaac6cacaaI4aGaaG4m aiaaiIdacaqGSaGaaeiiaiaaykW7caWGMbWaaSbaaSqaaiaadogaae qaaOGaaeypaiaabkdacaqG3aGaaeiiaiaabUfacaqGnbGaaeiuaiaa bggacaqGDbaaaa@4A0A@ cap開始圧力 P a = α ⋅ P b =0 .351, f c = 11.305 [MPa] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaadggaaeqaaOGaeyypa0JaeqySdeMaeyyXICTaamiuamaa BaaaleaacaWGIbaabeaakiaab2dacaqGWaGaaeOlaiaabodacaqG1a GaaeymaiaabYcacaqGGaGaaGPaVlaadAgadaWgaaWcbaGaam4yaaqa baGccqGH9aqpcaaIXaGaaGymaiaac6cacaaIZaGaaGimaiaaiwdaca qGGaGaae4waiaab2eacaqGqbGaaeyyaiaab2faaaa@53B2@ 一定に設定された材料粘着力 c = 0.169175 , f c = 5.4508 [MPa] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbGaey ypa0JaaGimaiaac6cacaaIXaGaaGOnaiaaiMdacaaIXaGaaG4naiaa iwdacaqGSaGaaeiiaiaaykW7caWGMbWaaSbaaSqaaiaadogaaeqaaO Gaeyypa0JaaGynaiaac6cacaaI0aGaaGynaiaaicdacaaI4aGaaeii aiaabUfacaqGnbGaaeiuaiaabggacaqGDbaaaa@4E79@ 注: この例では、応力は f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ によってスケーリングされています。コンクリート材料について一般的に行われるのは、圧縮で圧力を正に定義することです。したがって、応力は引張で負となります。 シミュレーションの反復 この例題の目的はシミュレーション結果をKupfer 2試験からの実験データと比較することです。 表 1. 荷重と破壊 試験 主応力 軸性 破壊応力 T000 単軸引張 σ 1 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaaa@3CF6@ ; σ 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaaa@3CF6@ ; σ 3 = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaaa@3CF6@ 1/3 0.1 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ C000 単軸圧縮 σ 1 = − 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE4@ ; σ 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaaa@3CF6@ ; σ 3 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaaa@3CF6@ -1/3 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ CC002軸圧縮 σ 1 = − 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE4@ ; σ 2 = − 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE5@ ; σ 3 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaaa@3CF6@ -2/3 1.15 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ CC01圧縮 / 圧縮 σ 1 = − 0.052 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGim aiaac6cacaaI1aGaaGOmaaaa@4010@ ; σ 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE5@ ; σ 3 = − 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE6@ -0.5849 1.22 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ TC01圧縮 / 引張 σ 1 = 0.052 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGim aiaac6cacaaI1aGaaGOmaaaa@4010@ ; σ 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE5@ ; σ 3 = − 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE6@ -0.3077 0.8 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ TC02圧縮 / 引張 σ 1 = 0.102 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGim aiaac6cacaaI1aGaaGOmaaaa@4010@ ; σ 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE5@ ; σ 3 = − 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE6@ -0.2838 0.6 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ TC03圧縮 / 引張 σ 1 = 0.204 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGim aiaac6cacaaI1aGaaGOmaaaa@4010@ ; σ 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE5@ ; σ 3 = − 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE6@ -0.2377 0.35 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ 軸性は、主応力を使って計算されます: σ * = σ m σ V M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaCaaaleqabaWdbiaacQcaaaGccqGH9aqpdaWcaaWd aeaapeGaae4Wd8aadaWgaaWcbaWdbiaad2gaa8aabeaaaOqaa8qacq aHdpWCpaWaaSbaaSqaa8qacaWGwbGaamytaaWdaeqaaaaaaaa@4081@ ここで、 σ m = p = 1 3 ( σ 1 + σ 2 + σ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Wd8aadaWgaaWcbaWdbiaad2gaa8aabeaakiabg2da9iaadcha peGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaiodaaaWaae Waa8aabaWdbiaabo8apaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa ey4kaSIaae4Wd8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHRa WkcaqGdpWdamaaBaaaleaapeGaaG4maaWdaeqaaaGcpeGaayjkaiaa wMcaaaaa@4858@ および σ V M = 1 2 [ ( σ 1 − σ 2 ) 2 + ( σ 2 − σ 3 ) 2 + ( σ 3 − σ 1 ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Wd8aadaWgaaWcbaWdbiaadAfacaWGnbaapaqabaGcpeGaeyyp a0ZaaOaaa8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIYa aaamaadmaapaqaa8qadaqadaWdaeaapeGaae4Wd8aadaWgaaWcbaWd biaaigdaa8aabeaak8qacqGHsislcaqGdpWdamaaBaaaleaapeGaaG OmaaWdaeqaaaGcpeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI YaaaaOGaey4kaSYaaeWaa8aabaWdbiaabo8apaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyOeI0Iaae4Wd8aadaWgaaWcbaWdbiaaioda a8aabeaaaOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaa aakiabgUcaRmaabmaapaqaa8qacaqGdpWdamaaBaaaleaapeGaaG4m aaWdaeqaaOWdbiabgkHiTiaabo8apaWaaSbaaSqaa8qacaaIXaaapa qabaaak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaa kiaawUfacaGLDbaaaSqabaaaaa@5A1B@ 図 3 は、 σ VM versus p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiabeo8aZnaaBaaaleaacaWGwbGaamytaaqabaGccaqGGaqcaaIa aeODaiaabwgacaqGYbGaae4CaiaabwhacaqGZbGccaqGGaGaamiCaa aa@4617@ 応力空間でのコンクリート材料実験破壊応力( f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ によりスケーリング)を示しています。図 3. 実験データ(フォンミーゼス / 圧力曲線) 結果 LAW24およびLAW81での破壊結果 LAW24での破壊曲線は: r f = 1 a ( b + b 2 − a ( σ m − c ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOCamaaBaaaleaacaWGMbaabeaakiabg2da9maalaaabaGaaGym aaqaaiaadggaaaGaaiikaiaadkgacqGHRaWkdaGcaaqaaiaadkgada ahaaWcbeqaaiaaikdaaaGccqGHsislcaWGHbGaaiikaiabeo8aZnaa BaaaleaacaWGTbaabeaakiabgkHiTiaadogacaGGPaaaleqaaaaa@49A7@ ここで、 b = 1 2 ( b c + b t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOyaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaaiikaiaa dkgadaWgaaWcbaGaam4yaaqabaGccqGHRaWkcaWGIbWaaSbaaSqaai aadshaaeqaaOGaaiykaaaa@424C@ Radiossは異なる強度入力 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ 、 f t f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8 qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9 pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaO qaamaaliaabaGaamOzamaaBaaaleaacaWG0baabeaaaOqaaiaadAga daWgaaWcbaGaam4yaaqabaaaaaaa@3D80@ を使ってカーブフィッティングを行い、式 2、 r f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8 qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9 pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadkhadaWgaaWcbaGaamOzaaqabaaaaa@3B63@ 破壊曲線(緑色)を得ます。図 4. 実験データとLAW24解析データ(フォンミーゼス / 圧力曲線) LAW81では破壊曲線と降伏曲線は同じで、下記の2つのパートに描写されます: p ≤ P a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWbGaey izImQaamiuamaaBaaaleaacaWGHbaabeaaaaa@3BF9@ 右記で線形; p tan ϕ + c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWbGaci iDaiaacggacaGGUbGaeqy1dyMaey4kaSIaam4yaaaa@3EC0@ 破壊は σ m tan ( 68.35 ∘ ) + 5.4508 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda WgaaWcbaGaamyBaaqabaGcciGG0bGaaiyyaiaac6gacaGGOaGaaGOn aiaaiIdacaGGUaGaaG4maiaaiwdadaahaaWcbeqaaiablIHiVbaaki aacMcacqGHRaWkcaaI1aGaaiOlaiaaisdacaaI1aGaaGimaiaaiIda aaa@48EA@ P a < p ≤ P b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaadggaaeqaaOGaeyipaWJaamiCaiabgsMiJkaadcfadaWg aaWcbaGaamOyaaqabaaaaa@3EEF@ (cap)cap曲線は: 1 − ( p − p a p b − p a ) 2 ⋅ ( p tan ϕ + c ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca aIXaGaeyOeI0YaaeWaaeaadaWcaaqaaiaadchacqGHsislcaWGWbWa aSbaaSqaaiaadggaaeqaaaGcbaGaamiCamaaBaaaleaacaWGIbaabe aakiabgkHiTiaadchadaWgaaWcbaGaamyyaaqabaaaaaGccaGLOaGa ayzkaaWaaWbaaSqabeaacaaIYaaaaaqabaGccqGHflY1daqadaqaai aadchaciGG0bGaaiyyaiaac6gacqaHvpGzcqGHRaWkcaWGJbaacaGL OaGaayzkaaaaaa@4E68@ 破壊は: 1− ( σ m −27 27−11.305 ) 2 ⋅ σ m ⋅tan( 68.35 ∘ )+5.4508 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGcaaqaai aaigdacqGHsisldaqadaqaamaalaaabaGaeq4Wdm3aaSbaaSqaaiaa d2gaaeqaaOGaeyOeI0IaaGOmaiaaiEdaaeaacaaIYaGaaG4naiabgk HiTiaaigdacaaIXaGaaiOlaiaaiodacaaIWaGaaGynaaaaaiaawIca caGLPaaadaahaaWcbeqaaiaaikdaaaaabeaakiabgwSixlabeo8aZn aaBaaaleaacaWGTbaabeaakiabgwSixlGacshacaGGHbGaaiOBaiaa cIcacaaI2aGaaGioaiaac6cacaaIZaGaaGynamaaCaaaleqabaGaeS igI8gaaOGaaiykaiabgUcaRiaaiwdacaGGUaGaaGinaiaaiwdacaaI WaGaaGioaaaa@5DDF@ LAW81の場合のこれら破壊曲線の2つのパートは:図 5. 実験データとLAW81解析データ(フォンミーゼス / 圧力曲線) 異なる荷重経路(Kupfer 試験より)におけるLAW24およびLAW81での破壊結果は次のように示されます:図 6. LAW24解析およびシミュレーション結果(荷重経路)(フォンミーゼス / 圧力曲線) 図 7. LAW81解析およびシミュレーション結果(荷重経路)(フォンミーゼス / 圧力曲線) LAW24破壊結果とLAW81破壊結果を実験データと比較すると、LAW81結果はLAW24よりも良好です。図 8. 実験データとLAW24 Radiossデータ(フォンミーゼス / 圧力曲線) 図 9. 実験データとLAW81 Radiossデータ(フォンミーゼス / 圧力曲線) LAW81の破壊結果は、cap領域においてさえも実験データと合致します。LAW24結果については、ほとんどが解析結果と良好に一致しています; CC00以外は解析曲線とやや大きな差異が見られますが、実験データとほぼ同じです。下に示すCC00応力-ひずみ図は、ほとんど同じ破壊応力を示しています。図 10. CC00実験データとLAW24 Radioss結果 コンクリート引張試験の結果 コンクリートは引張では荷重をあまりサポートしません。LAW24では、単軸引張破壊(応力によってモデル化)および弾性係数の軟化の挙動は H t , D sup , ε max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisamaaBaaaleaacaWG0baabeaakiaacYcacaaMi8UaaGPaVlaa dseapaWaaSbaaSqaa8qaciGGZbGaaiyDaiaacchaa8aabeaakiaacY cacqaH1oqzdaWgaaWcbaGaciyBaiaacggacaGG4baabeaaaaa@453D@ によって定義されます。軟化係数 H t = − E c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGibWaaS baaSqaaiaadshaaeqaaOGaeyypa0JaeyOeI0IaamyramaaBaaaleaa caWGJbaabeaaaaa@3C2B@ (デフォルト)が引張の場合設定されます。上記の曲線のピークは、入力において f t f c = 0.1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWccaqaai aadAgadaWgaaWcbaGaamiDaaqabaaakeaacaWGMbWaaSbaaSqaaiaa dogaaeqaaaaakiabg2da9iaaicdacaGGUaGaaGymaaaa@3DC0@ (デフォルト)で定義されている0.1です。 LAW81では、引張と圧縮に同じ体積弾性率とせん断係数が使用されます。LAW24では、 E = ( 1 − D sup ) ⋅ E c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbGaey ypa0ZaaeWaaeaacaaIXaGaeyOeI0IaamiramaaBaaaleaaciGGZbGa aiyDaiaacchaaeqaaaGccaGLOaGaayzkaaGaeyyXICTaamyramaaBa aaleaacaWGJbaabeaaaaa@436C@ を用いて軟化後のコンクリートでの残りの剛性を表すことができます。これはLAW81では不可能です。図 11. 単軸引張T000実験データとRadioss(LAW24およびLAW81)結果 まとめ 複雑な荷重下で、コンクリートの破壊の挙動が2つのRadioss材料モデルLAW24およびLAW81を用いて示され、結果が実験と比較されました。LAW24の場合、実験データが入手できなければ、デフォルト値が良好な選択肢です。LAW81の場合、材料パラメータ ϕ , c , α , P b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzca GGSaGaam4yaiaacYcacqaHXoqycaGGSaGaamiuamaaBaaaleaacaWG Ibaabeaaaaa@3FAF@ は、少なくとも4つの実験試験を用いたカーブフィッティングで計算される必要があります。 参考文献
モデル概要 10mmのコンクリートの立方体が、実験と同じ境界条件の1つの3次元要素を使ってモデル化されます。図 2. 立方体の形状 安定性の理由から、1つの要素モデルは時間ステップスケールファクター0.1を使用する必要があります。 ソリッドのプロパティは: qa = 1.1およびqb= 0.05(デフォルト値) Isolid= 24 Iframe= 2(共回転定式化) Istrain= 1(ポストでのひずみの取り扱いのため) この例題では、2つの材料則/MAT/LAW24および/MAT/LAW81が実験データと比較されます。 以下の単位系が用いられます: mm、ms、g、MPa 使用される材料データ1: コンクリート材料則(/MAT/LAW24) 初期密度 0.0022 [ g m m 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaai4zaaqaaiaac2gacaGGTbWaaWbaaSqabeaacaaIZaaa aaaaaOGaay5waiaaw2faaaaa@3D2B@ コンクリート弾性のヤング率 E c = 31700 [ MPa ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaadogaaeqaaOGaeyypa0JaaG4maiaaigdacaaI3aGaaGim aiaaicdacaGGBbGaciytaiaaccfacaGGHbGaciyxaaaa@4251@ ポアソン比 ν = 0.22 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcq GH9aqpcaaIWaGaaiOlaiaaikdacaaIYaaaaa@3D0A@ 硬化パラメータのコンクリート塑性初期値 k y = 0.35 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGRbWaaS baaSqaaiaadMhaaeqaaOGaeyypa0JaaGimaiaac6cacaaIZaGaaGyn aaaa@3D7A@ コンクリート塑性の降伏時ダイタランシー係数 α y = − 0.6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8 qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9 pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiabeg7aHnaaBaaaleaacaWG5baabeaakiabg2da9iabgkHiTiaa icdacaGGUaGaaGOnaaaa@4047@ コンクリート塑性の破壊時ダイタランシー係数 α f = 0.2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8 qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9 pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiabeg7aHnaaBaaaleaacaWGMbaabeaakiabg2da9iaaicdacaGG UaGaaGOmaaaa@3F43@ Kupfer実験データから読み出されたデータ コンクリートの単軸圧縮強度 f c =32.22[MPa] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8 qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9 pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadAgadaWgaaWcbaGaam4yaaqabaGccqGH9aqpcaaIZaGaaGOm aiaac6cacaaIYaGaaGOmaiaacUfaciGGnbGaaiiuaiaacggaciGGDb aaaa@4455@ コンクリートの単軸引張強度 0.01 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ 、そこで右記に設定; f t f c = 0.1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8 qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9 pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaO qaamaaliaabaGaamOzamaaBaaaleaacaWG0baabeaaaOqaaiaadAga daWgaaWcbaGaam4yaaqabaaaaOGaeyypa0JaaGimaiaac6cacaaIXa aaaa@40B7@ (LAW24でのデフォルト=0.1) コンクリートの2軸強度 1.15 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ 、そこで右記に設定; f b f c = 1.15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8 qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9 pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaO qaamaaliaabaGaamOzamaaBaaaleaacaWGIbaabeaaaOqaaiaadAga daWgaaWcbaGaam4yaaqabaaaaOGaeyypa0JaaGymaiaac6cacaaIXa GaaGynaaaa@4165@ その他のパラメータはLAW24でのデフォルトのままとして構いません。なぜならば、これらのデフォルト値は一般的なコンクリート材料の代表的な値であるためです。 コンクリート材料則(/MAT/LAW81) 初期密度 0.0022 [ g m m 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaai4zaaqaaiaac2gacaGGTbWaaWbaaSqabeaacaaIZaaa aaaaaOGaay5waiaaw2faaaaa@3D2B@ 体積弾性率 K = E c 3 ( 1 − 2 ν ) = 18869 .048[MPa] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbGaey ypa0ZaaSaaaeaacaWGfbWaaSbaaSqaaiaadogaaeqaaaGcbaGaaG4m amaabmaabaGaaGymaiabgkHiTiaaikdacqaH9oGBaiaawIcacaGLPa aaaaGaeyypa0JaaeymaiaabIdacaqG4aGaaeOnaiaabMdacaqGUaGa aeimaiaabsdacaqG4aGaae4waiaab2eacaqGqbGaaeyyaiaab2faaa a@4D58@ ヤング率 E c = 31700 [ MPa ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaadogaaeqaaOGaeyypa0JaaG4maiaaigdacaaI3aGaaGim aiaaicdacaGGBbGaciytaiaaccfacaGGHbGaciyxaaaa@4251@ ポアソン比 ν = 0.22 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH9oGBcq GH9aqpcaaIWaGaaiOlaiaaikdacaaIYaaaaa@3D0A@ せん断係数 G = E c 2 ( 1 + ν ) = 12991 .8[MPa] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbGaey ypa0ZaaSaaaeaacaWGfbWaaSbaaSqaaiaadogaaeqaaaGcbaGaaGOm amaabmaabaGaaGymaiabgUcaRiabe27aUbGaayjkaiaawMcaaaaacq GH9aqpcaqGXaGaaeOmaiaabMdacaqG5aGaaeymaiaab6cacaqG4aGa ae4waiaab2eacaqGqbGaaeyyaiaab2faaaa@4B18@ 下記のデータは、入力ファイルに含まれるComposeComposeスクリプトを用いて実験データにカーブフィッティングさせることによって計算されました。 摩擦角 ϕ = 68 .35 ∘ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzcq GH9aqpcaqG2aGaaeioaiaab6cacaqGZaGaaeynamaaCaaaleqabaGa eSigI8gaaaaa@3F30@ 比率 α = 0 .4186898 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqycq GH9aqpcaqGWaGaaeOlaiaabsdacaqGXaGaaeioaiaabAdacaqG4aGa aeyoaiaabIdaaaa@4082@ 一定に設定されたcap制限圧力 P b = 0.838 , f c =27 [MPa] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaadkgaaeqaaOGaeyypa0JaaGimaiaac6cacaaI4aGaaG4m aiaaiIdacaqGSaGaaeiiaiaaykW7caWGMbWaaSbaaSqaaiaadogaae qaaOGaaeypaiaabkdacaqG3aGaaeiiaiaabUfacaqGnbGaaeiuaiaa bggacaqGDbaaaa@4A0A@ cap開始圧力 P a = α ⋅ P b =0 .351, f c = 11.305 [MPa] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaadggaaeqaaOGaeyypa0JaeqySdeMaeyyXICTaamiuamaa BaaaleaacaWGIbaabeaakiaab2dacaqGWaGaaeOlaiaabodacaqG1a GaaeymaiaabYcacaqGGaGaaGPaVlaadAgadaWgaaWcbaGaam4yaaqa baGccqGH9aqpcaaIXaGaaGymaiaac6cacaaIZaGaaGimaiaaiwdaca qGGaGaae4waiaab2eacaqGqbGaaeyyaiaab2faaaa@53B2@ 一定に設定された材料粘着力 c = 0.169175 , f c = 5.4508 [MPa] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbGaey ypa0JaaGimaiaac6cacaaIXaGaaGOnaiaaiMdacaaIXaGaaG4naiaa iwdacaqGSaGaaeiiaiaaykW7caWGMbWaaSbaaSqaaiaadogaaeqaaO Gaeyypa0JaaGynaiaac6cacaaI0aGaaGynaiaaicdacaaI4aGaaeii aiaabUfacaqGnbGaaeiuaiaabggacaqGDbaaaa@4E79@ 注: この例では、応力は f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ によってスケーリングされています。コンクリート材料について一般的に行われるのは、圧縮で圧力を正に定義することです。したがって、応力は引張で負となります。 シミュレーションの反復 この例題の目的はシミュレーション結果をKupfer 2試験からの実験データと比較することです。 表 1. 荷重と破壊 試験 主応力 軸性 破壊応力 T000 単軸引張 σ 1 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaaa@3CF6@ ; σ 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaaa@3CF6@ ; σ 3 = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaaa@3CF6@ 1/3 0.1 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ C000 単軸圧縮 σ 1 = − 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE4@ ; σ 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaaa@3CF6@ ; σ 3 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaaa@3CF6@ -1/3 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ CC002軸圧縮 σ 1 = − 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE4@ ; σ 2 = − 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE5@ ; σ 3 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGimaaaa@3CF6@ -2/3 1.15 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ CC01圧縮 / 圧縮 σ 1 = − 0.052 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGim aiaac6cacaaI1aGaaGOmaaaa@4010@ ; σ 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE5@ ; σ 3 = − 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE6@ -0.5849 1.22 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ TC01圧縮 / 引張 σ 1 = 0.052 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGim aiaac6cacaaI1aGaaGOmaaaa@4010@ ; σ 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE5@ ; σ 3 = − 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE6@ -0.3077 0.8 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ TC02圧縮 / 引張 σ 1 = 0.102 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGim aiaac6cacaaI1aGaaGOmaaaa@4010@ ; σ 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE5@ ; σ 3 = − 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE6@ -0.2838 0.6 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ TC03圧縮 / 引張 σ 1 = 0.204 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGim aiaac6cacaaI1aGaaGOmaaaa@4010@ ; σ 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE5@ ; σ 3 = − 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaeq4Wdm3aaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaeyOeI0IaaGym aaaa@3DE6@ -0.2377 0.35 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ 軸性は、主応力を使って計算されます: σ * = σ m σ V M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaCaaaleqabaWdbiaacQcaaaGccqGH9aqpdaWcaaWd aeaapeGaae4Wd8aadaWgaaWcbaWdbiaad2gaa8aabeaaaOqaa8qacq aHdpWCpaWaaSbaaSqaa8qacaWGwbGaamytaaWdaeqaaaaaaaa@4081@ ここで、 σ m = p = 1 3 ( σ 1 + σ 2 + σ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Wd8aadaWgaaWcbaWdbiaad2gaa8aabeaakiabg2da9iaadcha peGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaiodaaaWaae Waa8aabaWdbiaabo8apaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa ey4kaSIaae4Wd8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHRa WkcaqGdpWdamaaBaaaleaapeGaaG4maaWdaeqaaaGcpeGaayjkaiaa wMcaaaaa@4858@ および σ V M = 1 2 [ ( σ 1 − σ 2 ) 2 + ( σ 2 − σ 3 ) 2 + ( σ 3 − σ 1 ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Wd8aadaWgaaWcbaWdbiaadAfacaWGnbaapaqabaGcpeGaeyyp a0ZaaOaaa8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIYa aaamaadmaapaqaa8qadaqadaWdaeaapeGaae4Wd8aadaWgaaWcbaWd biaaigdaa8aabeaak8qacqGHsislcaqGdpWdamaaBaaaleaapeGaaG OmaaWdaeqaaaGcpeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI YaaaaOGaey4kaSYaaeWaa8aabaWdbiaabo8apaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyOeI0Iaae4Wd8aadaWgaaWcbaWdbiaaioda a8aabeaaaOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaa aakiabgUcaRmaabmaapaqaa8qacaqGdpWdamaaBaaaleaapeGaaG4m aaWdaeqaaOWdbiabgkHiTiaabo8apaWaaSbaaSqaa8qacaaIXaaapa qabaaak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaa kiaawUfacaGLDbaaaSqabaaaaa@5A1B@ 図 3 は、 σ VM versus p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbc9v8 qqaqFr0xb9pg0xb9qqaqFn0dXdHiVcFbIOFHK8Feea0dXdar=Jb9hs 0dXdHuk9fr=xfr=xfrpeWZqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiabeo8aZnaaBaaaleaacaWGwbGaamytaaqabaGccaqGGaqcaaIa aeODaiaabwgacaqGYbGaae4CaiaabwhacaqGZbGccaqGGaGaamiCaa aa@4617@ 応力空間でのコンクリート材料実験破壊応力( f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ によりスケーリング)を示しています。図 3. 実験データ(フォンミーゼス / 圧力曲線)
結果 LAW24およびLAW81での破壊結果 LAW24での破壊曲線は: r f = 1 a ( b + b 2 − a ( σ m − c ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOCamaaBaaaleaacaWGMbaabeaakiabg2da9maalaaabaGaaGym aaqaaiaadggaaaGaaiikaiaadkgacqGHRaWkdaGcaaqaaiaadkgada ahaaWcbeqaaiaaikdaaaGccqGHsislcaWGHbGaaiikaiabeo8aZnaa BaaaleaacaWGTbaabeaakiabgkHiTiaadogacaGGPaaaleqaaaaa@49A7@ ここで、 b = 1 2 ( b c + b t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOyaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaaiikaiaa dkgadaWgaaWcbaGaam4yaaqabaGccqGHRaWkcaWGIbWaaSbaaSqaai aadshaaeqaaOGaaiykaaaa@424C@ Radiossは異なる強度入力 f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEeuz0lXdbb a9frFj0=irFfea0lXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yq aiVgFr0xfr=xfr=xb9adbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOzamaaBaaaleaacaWGJbaabeaaaaa@3A81@ 、 f t f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8 qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9 pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaO qaamaaliaabaGaamOzamaaBaaaleaacaWG0baabeaaaOqaaiaadAga daWgaaWcbaGaam4yaaqabaaaaaaa@3D80@ を使ってカーブフィッティングを行い、式 2、 r f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbvg9s8 qqaqFr0xc9ps0xbba9s8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9 pgeaYRXxe9vr0=vr0=vqpWqaaiaaciWacmaadaGabiaaeaGaauaaaO qaaiaadkhadaWgaaWcbaGaamOzaaqabaaaaa@3B63@ 破壊曲線(緑色)を得ます。図 4. 実験データとLAW24解析データ(フォンミーゼス / 圧力曲線) LAW81では破壊曲線と降伏曲線は同じで、下記の2つのパートに描写されます: p ≤ P a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWbGaey izImQaamiuamaaBaaaleaacaWGHbaabeaaaaa@3BF9@ 右記で線形; p tan ϕ + c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWbGaci iDaiaacggacaGGUbGaeqy1dyMaey4kaSIaam4yaaaa@3EC0@ 破壊は σ m tan ( 68.35 ∘ ) + 5.4508 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda WgaaWcbaGaamyBaaqabaGcciGG0bGaaiyyaiaac6gacaGGOaGaaGOn aiaaiIdacaGGUaGaaG4maiaaiwdadaahaaWcbeqaaiablIHiVbaaki aacMcacqGHRaWkcaaI1aGaaiOlaiaaisdacaaI1aGaaGimaiaaiIda aaa@48EA@ P a < p ≤ P b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaadggaaeqaaOGaeyipaWJaamiCaiabgsMiJkaadcfadaWg aaWcbaGaamOyaaqabaaaaa@3EEF@ (cap)cap曲線は: 1 − ( p − p a p b − p a ) 2 ⋅ ( p tan ϕ + c ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaaca aIXaGaeyOeI0YaaeWaaeaadaWcaaqaaiaadchacqGHsislcaWGWbWa aSbaaSqaaiaadggaaeqaaaGcbaGaamiCamaaBaaaleaacaWGIbaabe aakiabgkHiTiaadchadaWgaaWcbaGaamyyaaqabaaaaaGccaGLOaGa ayzkaaWaaWbaaSqabeaacaaIYaaaaaqabaGccqGHflY1daqadaqaai aadchaciGG0bGaaiyyaiaac6gacqaHvpGzcqGHRaWkcaWGJbaacaGL OaGaayzkaaaaaa@4E68@ 破壊は: 1− ( σ m −27 27−11.305 ) 2 ⋅ σ m ⋅tan( 68.35 ∘ )+5.4508 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGcaaqaai aaigdacqGHsisldaqadaqaamaalaaabaGaeq4Wdm3aaSbaaSqaaiaa d2gaaeqaaOGaeyOeI0IaaGOmaiaaiEdaaeaacaaIYaGaaG4naiabgk HiTiaaigdacaaIXaGaaiOlaiaaiodacaaIWaGaaGynaaaaaiaawIca caGLPaaadaahaaWcbeqaaiaaikdaaaaabeaakiabgwSixlabeo8aZn aaBaaaleaacaWGTbaabeaakiabgwSixlGacshacaGGHbGaaiOBaiaa cIcacaaI2aGaaGioaiaac6cacaaIZaGaaGynamaaCaaaleqabaGaeS igI8gaaOGaaiykaiabgUcaRiaaiwdacaGGUaGaaGinaiaaiwdacaaI WaGaaGioaaaa@5DDF@ LAW81の場合のこれら破壊曲線の2つのパートは:図 5. 実験データとLAW81解析データ(フォンミーゼス / 圧力曲線) 異なる荷重経路(Kupfer 試験より)におけるLAW24およびLAW81での破壊結果は次のように示されます:図 6. LAW24解析およびシミュレーション結果(荷重経路)(フォンミーゼス / 圧力曲線) 図 7. LAW81解析およびシミュレーション結果(荷重経路)(フォンミーゼス / 圧力曲線) LAW24破壊結果とLAW81破壊結果を実験データと比較すると、LAW81結果はLAW24よりも良好です。図 8. 実験データとLAW24 Radiossデータ(フォンミーゼス / 圧力曲線) 図 9. 実験データとLAW81 Radiossデータ(フォンミーゼス / 圧力曲線) LAW81の破壊結果は、cap領域においてさえも実験データと合致します。LAW24結果については、ほとんどが解析結果と良好に一致しています; CC00以外は解析曲線とやや大きな差異が見られますが、実験データとほぼ同じです。下に示すCC00応力-ひずみ図は、ほとんど同じ破壊応力を示しています。図 10. CC00実験データとLAW24 Radioss結果 コンクリート引張試験の結果 コンクリートは引張では荷重をあまりサポートしません。LAW24では、単軸引張破壊(応力によってモデル化)および弾性係数の軟化の挙動は H t , D sup , ε max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisamaaBaaaleaacaWG0baabeaakiaacYcacaaMi8UaaGPaVlaa dseapaWaaSbaaSqaa8qaciGGZbGaaiyDaiaacchaa8aabeaakiaacY cacqaH1oqzdaWgaaWcbaGaciyBaiaacggacaGG4baabeaaaaa@453D@ によって定義されます。軟化係数 H t = − E c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGibWaaS baaSqaaiaadshaaeqaaOGaeyypa0JaeyOeI0IaamyramaaBaaaleaa caWGJbaabeaaaaa@3C2B@ (デフォルト)が引張の場合設定されます。上記の曲線のピークは、入力において f t f c = 0.1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWccaqaai aadAgadaWgaaWcbaGaamiDaaqabaaakeaacaWGMbWaaSbaaSqaaiaa dogaaeqaaaaakiabg2da9iaaicdacaGGUaGaaGymaaaa@3DC0@ (デフォルト)で定義されている0.1です。 LAW81では、引張と圧縮に同じ体積弾性率とせん断係数が使用されます。LAW24では、 E = ( 1 − D sup ) ⋅ E c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbGaey ypa0ZaaeWaaeaacaaIXaGaeyOeI0IaamiramaaBaaaleaaciGGZbGa aiyDaiaacchaaeqaaaGccaGLOaGaayzkaaGaeyyXICTaamyramaaBa aaleaacaWGJbaabeaaaaa@436C@ を用いて軟化後のコンクリートでの残りの剛性を表すことができます。これはLAW81では不可能です。図 11. 単軸引張T000実験データとRadioss(LAW24およびLAW81)結果 まとめ 複雑な荷重下で、コンクリートの破壊の挙動が2つのRadioss材料モデルLAW24およびLAW81を用いて示され、結果が実験と比較されました。LAW24の場合、実験データが入手できなければ、デフォルト値が良好な選択肢です。LAW81の場合、材料パラメータ ϕ , c , α , P b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzca GGSaGaam4yaiaacYcacqaHXoqycaGGSaGaamiuamaaBaaaleaacaWG Ibaabeaaaaa@3FAF@ は、少なくとも4つの実験試験を用いたカーブフィッティングで計算される必要があります。 参考文献