延性破壊

/FAIL/BIQUAD/FAIL/JOHNSONおよび/FAIL/TAB1破壊モデルは、破壊における塑性ひずみを材料内の応力状態に関連付けすることによって材料の破壊を定義します。

これらの破壊モデルは、材料の延性破壊の記述によく使用されます。材料内の応力の状態は、応力の軸性を用いることで定義できます。

応力の軸性(正規化された平均応力)

延性材料については、材料の応力の状態(圧縮、せん断、引張など)が、材料の破断の際の塑性ひずみに影響します。応力の状態を表す重要かつ有益な特性である応力の軸性は、次のように定義されます:
σ * = σ m σ V M
ここで、
σ m = 1 3 ( σ 1 + σ 2 + σ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Wd8aadaWgaaWcbaWdbiaad2gaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaaGymaaWdaeaapeGaaG4maaaadaqadaWdaeaapeGaae 4Wd8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHRaWkcaqGdpWd amaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgUcaRiaabo8apaWaaS baaSqaa8qacaaIZaaapaqabaaak8qacaGLOaGaayzkaaaaaa@465E@
平均(静水)応力
σ V M = 1 2 [ ( σ 1 σ 2 ) 2 + ( σ 2 σ 3 ) 2 + ( σ 3 σ 1 ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Wd8aadaWgaaWcbaWdbiaadAfacaWGnbaapaqabaGcpeGaeyyp a0ZaaOaaa8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIYa aaamaadmaapaqaa8qadaqadaWdaeaapeGaae4Wd8aadaWgaaWcbaWd biaaigdaa8aabeaak8qacqGHsislcaqGdpWdamaaBaaaleaapeGaaG OmaaWdaeqaaaGcpeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI YaaaaOGaey4kaSYaaeWaa8aabaWdbiaabo8apaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyOeI0Iaae4Wd8aadaWgaaWcbaWdbiaaioda a8aabeaaaOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaa aakiabgUcaRmaabmaapaqaa8qacaqGdpWdamaaBaaaleaapeGaaG4m aaWdaeqaaOWdbiabgkHiTiaabo8apaWaaSbaaSqaa8qacaaIXaaapa qabaaak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaa kiaawUfacaGLDbaaaSqabaaaaa@5A1B@
フォンミーゼス応力
一部の共通の応力状態の軸性値は、次のように得られます:
  • 純引張では:

    σ 2 = σ 3 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiaabo8apaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyypa0Ja ae4Wd8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGH9aqpcaaIWa aaaa@3E38@ 、したがって σ * = σ m σ V M = 1 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaCaaaleqabaWdbiaacQcaaaGccqGH9aqpdaWcaaWd aeaapeGaae4Wd8aadaWgaaWcbaWdbiaad2gaa8aabeaaaOqaa8qacq aHdpWCpaWaaSbaaSqaa8qacaWGwbGaamytaaWdaeqaaaaak8qacqGH 9aqpdaWcaaqaaiaaigdaaeaacaaIZaaaaaaa@4329@

  • 2軸圧縮では:

    σ 1 = σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Wd8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcaqG dpWdamaaBaaaleaapeGaaGOmaaWdaeqaaaaa@3BE9@ 、および σ 3 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Wd8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGH9aqpcaaI Waaaaa@3A46@ 、したがって σ * = σ m σ V M = 2 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaCaaaleqabaWdbiaacQcaaaGccqGH9aqpdaWcaaWd aeaapeGaae4Wd8aadaWgaaWcbaWdbiaad2gaa8aabeaaaOqaa8qacq aHdpWCpaWaaSbaaSqaa8qacaWGwbGaamytaaWdaeqaaaaak8qacqGH 9aqpcqGHsisldaWcaaqaaiaaikdaaeaacaaIZaaaaaaa@4417@

各種応力状態の応力軸性
応力軸性 σ * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaCaaaleqabaWdbiaacQcaaaaaaa@38C9@
応力状態
2 3
2軸圧縮
1 3
単軸圧縮
0
純せん断
1 3
単軸引張
1 3
平面ひずみ
2 3
2軸引張